본문 바로가기

항공우주102

[CR3BP] 운동방정식의 무차원화 원궤도제한삼체문제(CR3BP)의 운동방정식은 비선형 연립 미분방정식이므로 수치적으로 풀어야 하는데, 방정식에는 스케일이 크게 다른 항이 혼재되어 있다. 예를 들면 각속도 \(\omega_s\)는 매우 작은 값을 갖는 반면 질량, 거리 등은 매우 큰 값을 갖는다. 이와 같이 수치적 방법에서 스케일이 크게 다른 값이 혼재되어 있을 때 각 항들을 적절한 척도를 이용하여 스케일을 조정한다면 수치 오차를 최소화시킬 수 있다. CR3BP의 운동방정식을 무차원화(nondimensionalization)하여 수치 오차를 최소화하고 또한 사용되는 파라미터를 줄여 방정식을 단순화시켜 보자. 방정식을 무차원화하기 위해서는 먼저 기준 질량, 기준 거리, 기준 시간을 정해야 한다. 기준 질량 \(m_0\)으로서 두 주요(pri.. 2021. 4. 9.
[CR3BP] 운동방정식 유도 삼체문제(three-body problem)에서 세 질점 중 한 개의 질점의 질량 \(m_3\)이 다른 두 질점 \(m_1\), \(m_2\)보다 훨씬 작아서 무시할 수 있을 정도라고 가정해 보자. 그러면 질점 \(m_3\)는 두 질점 \(m_1\) 및 \(m_2\)에는 어떤 영향도 미치지 못할 것이므로 두 질점 \(m_1\)과 \(m_2\)의 운동은 이체문제(two-body problem)로 간주할 있다. 이와 같이 삼체문제를 특수한 경우로 제한한 문제를 '제한된 삼체문제(restricted three-body problem)' 라고 한다. 제한된 삼체문제에서 두 질점 \(m_1\)과 \(m_2\)의 운동은 이체문제를 따르므로 그 궤도는 두 질점 공통의 질량중심점을 중심으로 한 원, 타원, 포물선, 쌍.. 2021. 4. 8.
삼체문제 (Three-Body Problem) 이체문제(two-body problem)에서는 전 우주에 질점(point mass)이 딱 2개 밖에 없으며 두 질점 사이에는 만유인력만 작용한다는 가정하에서 두 질점의 운동에 관한 문제를 다루었다. 이체문제는 해석적인 해가 존재했으며 두 질점의 절대적인 또는 상대적인 궤도의 모양은 원, 타원, 포물선, 쌍곡선 중의 하나였다. 삼체문제(three-body problem)는 이체문제에 질점 하나를 추가한 것이다. 전 우주에 질점이 3개밖에 없으며 세 질점 사이에 만유인력만 작용한다는 가정하에서 세 질점의 운동을 다루는 문제다. 삼체문제는 질점 하나를 더 추가했을 뿐이지만 이체문제와는 확연히 다른 매우 복잡한 운동의 모습을 보여준다. 우선 삼체문제는 해석적인 해가 없다. 수치적으로 운동 방정식을 풀어야 한다... 2021. 4. 7.
기본 궤도 미분 방정식 - 궤적 방정식 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2 \vec{r}}{ dt^2} + \frac{\mu}{r^3} \vec{r} =0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 알 수 있는 것에는 또 무엇이 있을까. 궤도의 모양을 알 수 있다. 궤도 미분 방정식에 의하면 궤도의 모양은 4가지밖에 없다. 원궤도, 타원궤도, 포물선궤도, 쌍곡선궤도가 그것이다. 어떻게 궤도의 모양을 알 수 있는지 살펴보도록 하자. 사실 궤도 미분 방정식을 풀면 질점 \(m\)의 운동 궤도 모양을 알 수 있다. 위 식은.. 2021. 3. 1.
기본 궤도 미분 방정식 - 궤도 에너지 보존 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2 \vec{r}}{ dt^2} + \frac{\mu}{r^3} \vec{r} =0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 어떤 것을 알 수 있을까. 만유인력은 보존력(conservative force)이므로 만유인력 이외의 다른 힘이 존재하지 않는다는 가정 하에서 질점 \(m\)의 기계적인 에너지(mechanical energy)는 보존될 것으로 예상할 수 있다. 궤도 미분 방정식을 이용하여 질점 \(m\)의 운동 궤도상에서 실제로 기계적인 .. 2021. 2. 25.
기본 궤도 미분 방정식 - 각운동량 보존과 궤도면 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2\vec{r}}{dt^2} + \frac{\mu}{r^3} \vec{r} = 0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 어떤 것을 알 수 있을까. 먼저 3차원 공간상에 있는 질점 \(m\)은 특정 평면내에서만 운동한다는 것을 알 수 있다. 이 평면을 궤도면(orbital plane)이라고 한다. 질점 \(M\)을 태양, 질점 \(m\)을 지구로 본다면 지구의 공전면을 황도면이라고 하는데, 지구는 태양 주위를 돌지만 황도면을 벗어나지는 못한다... 2021. 2. 24.
좌표변환 방법 비교 좌표변환 방법으로서 방향코사인행렬(DCM), 오일러각, 그리고 쿼터니언에 대해서 알아보았다. 이제 각각의 장단점을 비교해 보자. 먼저 DCM은 9개의 파라미터로 좌표변환을 표현한다. 그 중 6개는 구속조건을 만족해야 한다. 구속조건은 DCM이 단위직교 행렬(orthonormal matrix)이어야 한다는 것이었다. 이 구속 조건을 맞추기가 쉽지 않다는 것이 DCM의 큰 단점이다. 시간이 흐름에 따라서 좌표계의 자세가 달라질 경우 DCM의 미분 방정식을 세우고 이 방정식을 적분하여 매시간 마다 DCM을 계산해야 하는데, 이 때 수치 오차 때문에 계산된 DCM이 단위직교 행렬이 안될 수가 있다. DCM은 반드시 단위직교 행렬이어야 하므로 강제적으로 단위직교 행렬로 만들어야 할 필요가 있는데, 이것이 쉽지 않.. 2021. 2. 8.
쿼터니언 (Quaternions) 오일러의 회전 정리(Euler's rotation theorem)에 의하면 모든 좌표변환은 어떤 회전축과 그 회전축을 중심으로 하는 한번의 회전을 통해서 가능하다. 쿼터니언(quaternions)의 정의는 이 회전축과 회전각에 기반을 두고 있다. 좌표계 \(\{a\}\)를 회전축 \(\hat{p}\) 를 중심으로 회전각 \(\beta\) 만큼 회전하여 좌표계 \(\{b\}\)로 변환했다고 하면, 좌표계 \(\{a\}\)에서 좌표계 \(\{b\}\)로의 쿼터니언 \(q_b^a\)는 다음과 같이 정의된다. \[ q_b^a= \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} \cos \left( \frac{\beta}{2} \ri.. 2021. 2. 8.
짐벌락 (Gimbal Lock) 3자유도 짐벌 시스템에는 3개의 고리가 있다. 각각의 고리는 자신이 가진 단일 회전축을 중심으로만 회전할 수 있다. 한 고리의 회전축은 다른 두 고리의 회전축과 서로 직각을 이루도록 만들어졌다. 가장 바깥쪽 고리(빨강색)는 짐벌 시스템의 외부에 지지되어 있는 축을 중심으로 회전한다. 중간에 있는 고리(녹색)는 가장 바깥 쪽 고리에 회전축이 부착되어 있다. 가장 안쪽 고리(파랑색)는 회전축이 중간 고리에 부착되어 있다. 따라서 가장 바깥쪽 고리(빨강색)가 회전하면 안쪽에 있는 두개의 고리도 함께 움직이지만, 가장 안쪽에 있는 고리(파랑색)가 회전하더라도 그 바깥 쪽 고리는 영향을 받지 않는다. 이와 같이 3개의 고리가 서로 직각인 회전축을 갖는 구조를 3자유도 짐벌 시스템이라고 한다. 이러한 짐벌 시스템의.. 2021. 2. 7.
오일러각 (Euler Angles) 오일러각 좌표변환 방법은 좌표계 \(\{a\}\)에서 좌표계 \(\{b\}\)로의 좌표변환을 단 3개의 파라미터로 표현하는 방법이다. 좌표변환은 3개의 파라미터만으로 표현할 수 있으므로 오일러각 방법은 가장 경제적인 좌표변환 방법이라고 말할 수 있다. 오일러각 방법은 좌표계 \(\{a\}\)의 특정 좌표축을 시작으로 3번의 연속적인 회전을 통해서 좌표계 \(\{a\}\)를 좌표계 \(\{b\}\)로 변환한다. 먼저 공학의 여러 분야에서 통상적으로 사용되는 3-2-1 오일러각에 대해서 설명해 본다. 3-2-1 방식은 좌표계 \(\{a\}\)의 \(z\)축을 중심으로 회전하여 좌표변환하고, 다시 변환된 좌표계의 \(y\)축을 중심으로 회전하여 좌표변환하며, 마지막으로 변환된 좌표계의 \(x\)축을 중심으로 .. 2021. 2. 7.