본문 바로가기

전체 글162

Navier-Stokes 방정식의 벡터 표현 Navier-Stokes 방정식은 뉴톤 제2법칙을 유체에 적용한 것으로서 다음과 같이 유도되었다. \[ \begin{align} & \rho \left( \frac{\partial u}{\partial t}+ \mathbf{V} \cdot \nabla u \right) = -\frac{\partial p}{\partial x} +\frac{\partial \tau_{xx}}{\partial x} +\frac{\partial \tau_{yx}}{\partial y}+\frac{\partial \tau_{zx}}{\partial z}+\rho f_x \tag{1} \\ \\ & \rho \left( \frac{\partial v}{\partial t}+ \mathbf{V} \cdot \nabla v \rig.. 2021. 10. 22.
Yaw각이 파워계수에 미치는 영향 풍력터빈으로 유입되는 바람의 방향은 계속 변하기 때문에 일반적으로 풍력터빈의 로터축은 항상 바람 방향과 평행하지 않다. 그렇다고 로터축을 바람 방향의 변동성을 따라가도록 빠르게 정렬시킬 수는 없는 노릇이기 때문에 풍력터빈은 대부분 바람 방향과 로터 회전축이 편향된 상태로 작동한다고 할 수 있다. 또한 풍력단지(wind farm)안에 있는 풍력터빈의 경우에는 바람 방향과 로터축을 의도적으로 편향시켜 풍력단지의 제어 목적을 달성하기도 한다. 로터의 회전축과 바람 방향사이의 편향각을 요각(yaw angle) \(\gamma\) 라고 한다. 요각은 풍력터빈의 전력 생산에 영향을 미칠 수 있다. 왜냐하면 요각은 로터에 작용하는 바람 속도의 수직 성분을 감소시켜 로터에 가해지는 추력과 로터에 의해 추출되는 에너지의.. 2021. 10. 12.
바람 에너지와 파워계수 풍력터빈이 바람 에너지로부터 추출하는 파워와 바람이 풍력터빈에 가하는 추력을 원판 모델(actuator disk model)을 기반으로 하여 유도하면 다음과 같다. \[ \begin{align} & P = C_P \frac{1}{2} \rho A v^3 \tag{1} \\ \\ & F_T = C_T \frac{1}{2} \rho A v^2 \end{align} \] 여기서 \(v\) 는 풍력터빈으로 불어오는 바람의 속도, \(A\) 는 풍력터빈의 단면적(여기서는 디스크의 면적)이다. 파워계수(power coefficient) \(C_P\) 와 추력계수(thrust coefficient) \(C_T\) 는 다음과 같이 주어진다. \[ \begin{align} & C_P (a_{ax})=4 a_{ax} (1.. 2021. 10. 8.
물리 정보 신경망 (Physics-Informed Neural Network) 유체(fluid)나 탄성체 또는 변형체의 운동 법칙을 표현하거나 또는 여러가지 공학적인 문제를 모델링하고 해석하는데 편미분 방정식(PDE, partial differential equation)이 사용된다. 예를 들면 유체 운동의 지배 방정식인 나비어-스톡스(Navier-Stokes) 방정식을 들 수 있겠다. 편미분 방정식은 특수한 경우를 제외하고는 해석적인 해를 구할 수 없기 때문에 수치적인 방법을 사용한다. 전통적인 수치 방법은 유한차분법(FDM), 유한요소법(FEM), 또는 유한체적법(FVM)등이 있다. 이 방법들은 기본적으로 메쉬(mesh)기반으로서 계산 영역을 수많은 작은 메쉬로 분할하고 각 메쉬 포인트에서 수치해를 얻는 것이다. 이와 같은 수치적 방법은 편미분 방정식의 연구를 크게 촉진했으나 .. 2021. 9. 19.
Navier-Stokes 방정식 - 2 Navier-Stokes 방정식은 비선형 연립 편미분 방정식으로서 이 방정식의 해가 항상 존재하는지 여부도 아직 증명되지 않은 밀레니엄 문제 7개 중의 하나로 꼽힌다. 극히 단순한 경우를 제외하고는 해석적인 해가 존재하지 않을 뿐만 아니라, 수치해(numerical solution) 마저 구하기가 매우 어렵다. 물리기반 기계학습(physics-informed machine learning)이나 바람농장(wind farm)등에서는 유동의 속도가 음속보다 작은 영역을 다루므로 비압축성(incompressible) 가정이 성립한다. 그러면 밀도 \(\rho\) 는 상수이므로 연속 방정식은 다음과 같이 된다. \[ \nabla \cdot \mathbf{V} = 0 \tag{1} \] 식 (1)을 이용하면 Nav.. 2021. 8. 10.
Navier-Stokes 방정식 - 1 Navier-Stokes 방정식은 뉴톤 제2법칙으로부터 유도될 수 있다. 공기를 비롯한 유체는 고체와 달리 정해진 모양이 없기 때문에 뉴톤 제2법칙을 적용하기 위해서는 특별한 아이디어가 필요하다. 공기와 같은 속도로 움직이는 미소(infinitesimal) 체적을 생각해보자. 이 미소체적은 일정한 질량을 가지고 있으며, 질량을 유지하기 위해서 부피는 변할 수 있다고 가정한다. 이 미소체적을 질점으로 보면 뉴톤 제2법칙을 적용할 수 있다. 이 미소체적에 작용하는 힘은 체적력(body force), 압력, 그리고 점성력(viscous force)이 있다. 먼저 체적력에는 대표적으로 중력이 있으며 이밖에 관성력과 전자기력 등이 있다. 체적력 \(d\mathbf{F}_b\) 를 단위 질량당 체적력인 \(\mat.. 2021. 8. 10.
연속 방정식 (continuity equation) 공력(aerodynamic forces)의 측정과 예측을 위해서는 유동장(flow field)에 대한 지식이 필요하다. 유동장은 압력, 밀도, 온도, 속도 등4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 이와 관련된 지배 방정식은 연속 방정식, Navier-Stokes 방정식, 에너지 방정식이며 각각은 질량 보존 법칙, 뉴톤 제2법칙, 그리고 에너지 보존 법칙으로부터 유도할 수 있다. 먼저 연속 방정식(continuity equation)을 유도해보자. 공간상에 고정된 위치에 있는 미소(infinitesimal) 체적이 있다고 가정한다. 질량 보존의 법칙에 의하면 이 미소체적에서 빠져나가는 유량과 들어오는 유량의 차이는 미소체적 내부의 공기 질량의 감소량과 같아야 한다. 위 그림에서 .. 2021. 8. 9.
해밀톤 방정식 (Hamilton’s Equation) 라그랑지 방정식(Lagrange's equation)은 \(n\) 개의 2차 미분 방정식으로 구성되어 있다. 이 방정식을 \(2n\) 개의 1차 미분 방정식으로 재 구성한 것이 해밀톤 방정식(Hamilton's equation)이다. 먼저 일반화된 운동량(generalized momentum)을 다음과 같이 정의한다. \[ p_i= \frac{\partial L}{\partial \dot{q_i}}, \ \ \ \ \ i=1, 2, ... , n \tag{1} \] 이어서 해밀토니안 함수(Hamiltonian function)를 다음과 같이 정의하고, \[ H= \sum_{i=1}^n p_i \dot{q}_i-L(\mathbf{q}, \dot{\mathbf{q}}, t) \tag{2} \] 일반화된 속도.. 2021. 8. 8.
라그랑지 방정식 (Lagrange’s Equation) 라그랑지 방정식(Lagrange's equation)과 해밀톤 방정식(Hamilton's equation)은 해석 동역학(analytical dynamics)의 근간을 이룬다. 라그랑지 방정식은 해밀톤의 원리(Hamilton's principle)를 일반화 좌표로 표현한 2차 미분 방정식이며, 해밀톤 방정식은 라그랑지 방정식으로부터 유도할 수 있는 1차 미분 방정식이다. \(N\) 개의 질점으로 이루어진 홀로노믹(holonomic) 시스템이 있다고 하자. 그러면 \(N\) 개의 질점의 위치벡터를 일반화 좌표 \(q_i\) 를 이용하여 표현하면 다음과 같다. \[ \mathbf{r}_k= \mathbf{r}_k (q_1, q_2, ... , q_n, t), \ \ \ \ \ k=1, 2, ... ,N \t.. 2021. 8. 8.
일반화 좌표 (Generalized Coordinate) \(N\) 개의 질점으로 이루어진 시스템이 있다고 하자. 각 질점의 위치는 \(N\) 개의 위치 벡터 \(\mathbf{r}_k=\mathbf{r}_k (x_k, y_k, z_k ), \ \ k=1,...,N\) 으로 표현할 수 있다. 여기서 \(x_k, y_k, z_k\) 는 \(k\) 번째 질점의 위치를 직교 좌표계(Cartesian coordinate)로 표시한 좌표다. 질점이 운동할 경우 질점의 각 위치를 시간의 함수 \(x_k (t), y_k (t), z_k (t)\) 로 표현하면 된다. 그러면 3차원 공간상에 \(N\) 개의 운동 궤적이 나타날 것이다. 그런데 만약 \(3N\) 차원 공간이 있다면 \(N\) 개의 질점으로 이루어진 시스템의 운동을 한 점의 운동으로 표현할 수 있지 않을까. 이와.. 2021. 8. 8.