본문 바로가기

항공우주52

Vorticity 미분 방정식 VPM (Vortex Particle Method)은 비압축성 유체에 대한 Navier-Stokes 방정식을 풀기 위한 효율적인 수치 기법으로서, 격자가 필요 없기 (meshless) 때문에 유한체적법 (FVM, finite volume method)과 같은 기존의 격자(mesh) 기반 수치 기법에 대한 대안으로서 주목받고 있다. VPM은 Vorticity 미분 방정식을 지배 방정식으로 사용하기 때문에 이를 유도해 보고자 한다. 먼저 체적력을 무시할 수 있을 때 비압축성(incompressible) 뉴톤유체에 대한 Navier-Stokes 방정식은 다음과 같다. \[ \begin{align} & \nabla \cdot \mathbf{V} = 0 \tag{1} \\ \\ & \frac{\partial \m.. 2022. 5. 29.
Vorticity의 정의 어떤 유동장에서 운동하는 미소 유체요소(infinitesimal fluid element)를 생각해보자. 아래 그림과 같이 이 유체요소는 운동하면서 회전할 수도 있고 모양이 변할 수도 있다. 이 회전 및 모양의 변화 정도는 유체의 속도장에 따라 다르다. 여기서는 유체요소의 회전에 집중하여 유체의 속도장과 유체요소의 회전 각속도(angular velocity)의 관계에 대해서 알아보고자 한다. 논의를 간단하게 하기 위해서 일단 유체가 2차원 평면상을 흐른다고 하자. 아래 그림과 같이 시간 \(t\) 에서 이 유체요소의 모양이 직사각형이라고 가정한다. 시간이 \(\Delta t\) 만큼 흐르면 유체요소의 꼭지점 B와 C는 꼭지점 A에 대해서 각각 상대 위치가 변화한다. 유체요소의 각 점의 상대 속도가 그림에.. 2022. 5. 29.
유동장의 시간미분에 대해서 유동장(flow field)은 압력, 밀도, 온도, 속도 등 4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 예를 들면 밀도는 기준 좌표계에서의 위치 \((x,y,z)\) 와 함께 시간 \(t\) 의 함수로 주어진다. \[ \rho = \rho (x,y,z,t) \tag{1} \] 따라서 어떤 파라미터를 시간으로 미분할 경우 두 종류의 도함수(derivative)가 나온다. 바로 \(d/dt\) 와 \(\partial /\partial t\) 이다. 두 시간미분의 물리적인 의미를 알아보자. 아래 그림과 같이 어떤 유동장에서 운동하는 유체요소(fluid element)를 생각해보자. 시간 \(t_1\) 일 때 이 유체요소는 위치 \((x_1,y_1,z_1)\) 에 있다고 하자. 그러면 이.. 2022. 5. 24.
오일러의 회전 정리 (Euler’s Rotation Theorem) 오일러각 좌표변환 방법에서 알아본 회전축은 좌표계의 \(x\) 축, \(y\) 축, \(z\) 축이었다. 하지만 좌표계를 구성하는 좌표축만이 아니라 임의의 축, 즉 임의의 방향을 중심으로 좌표계를 회전시킬 수도 있다. 단위벡터는 크기가 \(1\) 인 벡터이기 때문에 방향을 표시하는데 자주 쓰인다. 여기서도 회전축 방향을 정하는데 단위벡터를 이용하기로 하고 기호로 \(\hat{p}\) 으로 표시하기로 한다. 좌표계 \(\{a\}\) 를 회전축 \(\hat{p}\) 축을 중심으로 \(\beta\) 만큼 회전시키면 새로운 좌표계로 변환되는데 이 좌표계를 \(\{b\}\) 라고 하자. 그러면 그림에서 보듯이 좌표계 \(\{a\}\) 의 좌표축과 회전축 사이의 각도는 좌표계 \(\{b\}\) 의 좌표축과 회전축 .. 2022. 3. 22.
라그랑지 방정식을 이용한 강체 운동방정식 유도 강체(rigid body)의 다양한 지점에 가해지는 모든 외력(external force)은 질량중심(center of mass)에 가해지는 총 외력으로 합산할 수 있고 질량중심은 마치 강체의 모든 질량이 그 중심에 집중되어 있는 질점(point mass)처럼 운동한다. 또한 외력은 강체의 다양한 지점에서 작용하기 때문에 질량중심에 대해서 모멘트를 만들고 이 모멘트는 질량중심에 대한 회전운동을 생성한다. 이와 같이 강체의 운동은 질량중심의 병진운동과 질량중심에 대한 회전운동으로 분리할 수 있다. 이제 강체 운동방정식을 라그랑지 방정식(Lagrange's Equation)을 이용하여 유도해 보도록 하겠다. 강체의 운동에너지도 질량중심의 병진 운동에너지와 질량중심에 대한 회전 운동에너지의 합으로 표현할 수 .. 2022. 2. 14.
강체의 운동방정식 - 4 지금까지 질량중심을 기준으로 강체(rigid body)의 운동방정식을 유도하였다. 이번에는 강체에 고정되어 있는 임의의 점 \(A\) 에 대해서 강체의 운동방정식을 유도해 보도록 하겠다. 임의의 점 \(A\) 에 대한 파티클 시스템(systems of particles)의 운동방정식은 다음과 같았다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j = m \frac{^i d^2 \vec{r}_G}{dt^2} = m \frac{^i d \vec{v}_G }{dt} \tag{1} \\ \\ & \frac{^i d \vec{H}_A}{dt} = m \frac{^i d \vec{r}_{G/A}}{dt} \times \vec{v}_G + \sum_{j=1}^n \vec{M}_{jA} \.. 2022. 2. 7.
강체의 운동방정식 - 3 지금까지 파티클 시스템(systems of particles)에 대해서 다음과 같은 운동방정식을 얻었다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j =m \frac{^id^2 \vec{r}_G }{dt^2}= m \frac{^id \vec{v}_G }{dt} \tag{1} \\ \\ & \sum_{j=1}^n \vec{M}_{jG} = \frac{^id \vec{H}_G }{dt} \tag{2} \\ \\ & \vec{H}_G= \sum_{j=1}^n \vec{r}_{j/G} \times m_j \frac{^id \vec{r}_j}{dt} \\ \\ & T= \frac{1}{2} m \vec{v}_G \cdot \vec{v}_G + \frac{1}{2} \sum_{j=1}.. 2022. 2. 6.
강체의 운동방정식 - 2 관성좌표계의 원점 \(O\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_O\) 를 다음과 같이 정의한 바 있다. \[ \vec{H}_O= \sum_{j=1}^n \vec{r}_j \times m_j \vec{v}_j \tag{1} \] 여기서 \(\vec{v}_j\) 는 파티클 \(j\) 의 속도로서 \(\vec{v}_j= \frac{^i d\vec{r}_j}{dt}\) 이다. 임의의 점 \(A\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_A\) 는 다음과 같이 정의한다. \[ \vec{H}_A = \sum_{j=1}^n \vec{r}_{j/A} \times m_j \vec{v}_j \tag{2} \] 여기서 \(\vec{r}_{j/A}\) 는 점 \(A\) 에서 파티클 \(j.. 2022. 2. 5.
강체의 운동방정식 - 1 고체(solid body)는 많은 수의 파티클 (또는 질점)로 구성되어 있는 파티클 시스템(systems of particles)이라고 볼 수 있다. 그 중에서 파티클 사이의 거리가 변하지 않는 시스템을 강체(rigid body)라고 한다. 파티클 사이의 거리가 시간에 따라서 변하는 시스템은 비강체 또는 유연체(탄성체 또는 비탄성체)라고 한다. 파티클 시스템에 적용되는 기본 원리도 강체에 적용되므로 강체의 운동 방정식을 유도하기 위해서 우선 파티클 시스템의 운동 방정식을 유도해 보기로 한다. 다음과 같이 \(n\) 개의 파티클로 구성된 시스템에서 파티클 \(j\) 에 작용하는 힘에는 외력(external force) \(\vec{F}_j\) 와 내력(internal force) \(\vec{f}_{jk}.. 2022. 2. 3.
ECEF-LLH 좌표계 상호 변환 매트랩 코드 LLH 좌표계에서 ECEF좌표계로 좌표변환하는 문제를 알고리즘 형태로 정리하면 다음과 같다. 입력: 위도 (\(\lambda_{lat}\)), 경도 (\(\lambda_{lon}\)), 높이 (\(h\)) 1. 접선반경 (\(R_{tr}\)) 계산: \(R_{tr}=\frac{ R_{eq}}{ \sqrt{1-e_{er}^2 \sin^2 \lambda_{lat}}}\) 2. 벡터 \(r^e\) 계산: \(r^e= \begin{bmatrix} (R_{tr}+h) \cos \lambda_{lat} \cos \lambda_{lon} \\ (R_{tr}+h) \cos \lambda_{lat} \sin \lambda_{lon} \\ \left( R_{tr} (1-e_{er}^2 )+h \right) \sin \la.. 2022. 1. 1.