본문 바로가기

항공우주114

[B-Plane] 좌표변환 B-평면과 관련하여 3개의 평면을 정의할 수 있다. 목표(target) 행성의 적도면(equatorial plane), 진입 궤도면(orbital plane), 그리고 B-평면(B-plane)이 그것이다. 또한 각 평면에서 각각 행성중심관성좌표계 \(\{a\}\), 궤도중심좌표계(perifocal frame) \(\{p\}\), 그리고 TRS좌표계 \(\{s\}\) 를 정의할 수 있다. 아래 그림에 이 3개의 평면과 좌표계가 나와 있다. 그림에서 \(i\) 는 궤도의 경사각, \(\vec{h}\) 는 각운동량 벡터다.    TRS좌표계 \(\{s\}\) 는 행성의 중심에 원점이 있고 점근선벡터 \(\hat{S}\) 를 z축, \(\hat{T}\) 을 x축, \(\hat{R}\) 을 y축으로하는 좌표계다... 2025. 1. 4.
[B-Plane] B-평면의 정의 우주비행체가 목표로 한 도착지 행성의 중력권으로 접근하는 단계에서의 궤도 설계는 행성의 궤도에 진입할지 또는 플라이바이(fly-by) 기동을 할지 등, 임무 목적에 따라 달라지며 이와 관련하여 설정된 조건의 충족을 목표로 삼아 수행된다. 예를 들어 행성의 궤도에 진입하는 것을 목적으로 할 경우 특정 시간에 특정 고도, 특정 경사각을 가진 궤도의 지점으로 도착해야 한다는 목표를 설정할 수 있을 것이다. 이러한 목표를 도착 타겟팅이라고 한다. 도착 타겟팅은 도착지 행성을 기준으로 진입 점근선(incoming asymptote)을 원하는 위치와 방향으로 배치하는 것으로써 달성될 수 있는데 이 때 사용되는 유용한 방법이 B-평면 타켓팅(B-plane targeting)이다. B-평면은 점근선의 위치와 방향을 단.. 2024. 12. 30.
쌍곡선 궤도의 기하학 이체문제 가정하에서 우주비행체가 가질 수 있는 궤도의 모양은 원, 타원, 포물선, 쌍곡선이 있다 (https://pasus.tistory.com/171). 이 중에서 포물선과 쌍곡선 궤도를 열린 궤도라고 하는데 이 궤도를 취해야 이체문제의 중심 질점으로부터 무한대 거리까지 비행할 수 있기 때문이다 (https://pasus.tistory.com/173). 우주비행체가 포물선 궤도를 따를 경우 무한대의 거리에서는 속도가 \(0\) 이지만, 쌍곡선 궤도를 따를 경우에는 무한대의 거리에서 속도가 \(v_\infty= \sqrt{2 \mathcal{E}}\) 로서 유한한 값을 갖는다. 여기서 \(\mathcal{E}\) 는 궤도의 역학적 에너지이다. 현실적으로 행성 또는 천체의 중심에서 거리가 무한대인 지점으로.. 2024. 12. 27.
대기 항력에 의한 궤도요소의 시간 변화율 고도 100 km 이하의 궤도인 초저궤도(VLEO, Very Low Earth Orbit)가 최근의 우주임무와 관련하여 주목을 받고 있다. 그러나 이러한 낮은 고도를 효율적으로 사용하려면 대기 항력을 극복해야 하는 큰 과제가 있다. 이 문제를 해결하기 위한 한가지 대안으로서 공기 호흡식 플라즈마 추진기(air-breathing plasma thruster) 관련 연구가 활발해지고 있다. 공기 호흡식 플라즈마 추진기는 홀 추진기, 이온 추진기, 자기플라즈마 역학(MPD) 추진기와 같은 기존의 전기추진시스템(electric propulsion system)과는 달리 대기에서 플라즈마를 생성하고 전기와 자기력을 사용하여 추진력을 생성하므로 무거운 탱크가 필요하지 않는 장점이 있다. 여기서는 추력기가 아니라.. 2024. 10. 29.
J2 섭동에 의한 궤도요소의 시간 변화율 - 2 J2 섭동에 의한 궤도요소의 시간 변화율을 다음과 같이 유도한 바 있다 (https://pasus.tistory.com/350). \[ \begin{align} \frac{da}{dt} & = 3J_2 \frac{a^2 \mu R_e^2 }{hr^4} \begin{bmatrix} e \sin \theta \ (3 \sin^2 i \sin^2 (\omega + \theta)-1) \\ -(1+e \cos \theta ) \sin^2 i \sin 2(\omega+ \theta) \end{bmatrix} \tag{1} \\ \\ \frac{de}{dt} &= \frac{3}{2} J_2 \frac{\mu R_e^2}{hr^3 } \begin{bmatrix} \frac{h^2}{\mu r} \sin \theta.. 2024. 9. 24.
J2 섭동에 의한 궤도요소의 시간 변화율 - 1 J2 섭동에 의한 궤도요소(orbital elements)의 시간 변화율은 라그랑지 행성 방정식(Lagrange planetary equation)이나 가우스 행성 방정식(Gauss planetary equation)을 이용하여 계산할 수 있다. 여기서는 가우스 행성 방정식을 이용해서 계산해 보도록 하겠다. 게시글 (https://pasus.tistory.com/346)에 있는 가우스 행성 방정식은 다음과 같았다.  \[ \begin{align} & \frac{da}{dt}= \frac{2a^2}{h} e \sin \theta \ a_r+ \frac{2a^2}{h} (1+e \cos \theta ) \ a_\theta \tag{1} \\ \\ & \frac{de}{dt}= \frac{h}{\mu} \si.. 2024. 9. 19.
J2 섭동 가속도 (J2 Perturbative Acceleration) 이체문제 하에서 지구를 단순하게 구형 대칭 질량체라고 가정하면 중력 포텐셜 함수(gravity potential function)는 \(V(r)=-\frac{\mu}{r}\) 이며 원추형 궤도를 생성한다. 하지만 지구는 구형 대칭 질량체가 아니고 적도 부분이 볼록하고 북극과 남극에서는 펀평한 타원구체 형태를 갖고 있으며 질량 분포 또한 불균일 하다. 이 경우 중력 포텐셜 함수는 구역 조화항(zonal harmonics), 부문 조화항(sectorial harmonics) 및 테세리얼 조화항(tesseral harmonics)을 포함한 복잡한 함수로 모델링할 수 있다 (https://pasus.tistory.com/348). 만약 지구의 모양과 질량 분포를 자전축을 중심으로 하는 축대칭으로 근사화한다면.. 2024. 9. 14.
중력 포텐셜 함수 (Gravity Potential Function) 이체문제(two-body problem)는 두 질점 사이에 작용하는 중력과 그에 따른 운동에 관한 문제다. 질량 분포가 구대칭인 구체(sphere)라면 모든 질량이 구체의 중심에 집중되어 있는 질점(point mass)처럼 작용하므로 이체문제의 가정에 부합한다. 하지만 대부분의 천체의 경우 기하학적 구조와 질량 분포는 불규칙하다. 지구도 모양이 구형이 아니라 타원체에 가깝고 밀도 또한 균일하지 않다. 이런 상황에서는 저궤도 위성의 경우 불균일한 중력의 영향 떄문에 궤도 섭동을 겪게 된다. 따라서 궤도의 장기적인 예측을 위해서는 지구를 단순하게 질점으로 가정하는 대신 중력 포텐셜 함수에 중력의 불균일한 요인을 추가하여 일정 수준의 정확도를 갖는 중력 모델을 개발할 필요가 있다. 다음 그림과 같이 임.. 2024. 9. 8.
가우스 변분 방정식 (Gauss Variational Equation) 라그랑지 행성 방정식은 섭동력이 보존력(conservative force)이어야 한다는 조건이 있었다. 하지만 섭동력이 보존력이 아닌 경우도 많다. 예를 들면 대기 항력, 제어 추력, 태양 복사 압력 등이다. 특히 섭동력이 제어 추력인 경우, 이 힘이 궤도요소에 어떤 영향을 미치는지를 직접적으로 이해하는 것은 제어기 설계에 있어서 매우 중요하다. 가우스 변분 방정식(Gauss variational equation)은 임의의 섭동력으로 인한 궤도요소의 시간 변화율을 힘의 관점에서 명시적으로 표현하기 때문에 섭동력이 비보존력인 경우에 특히 유용하다. 더구나 보존력인 경우에도 힘을 포텐셜 함수의 그래디언트로 표현할 수 있기 때문에 적용 가능하다. 라그랑지 행성 방정식을 유도할 때는 특별한 좌표계를 언급하지.. 2024. 9. 1.
라그랑지 행성 방정식 (Lagrange Planetary Equation) 이체문제는 우주에는 두 개의 질점만 존재하며, 중력이 두 질점 사이에 작용하는 유일한 힘이라는 가정을 기반으로 한다. 이체문제에서 이 힘을 제외한 모든 힘을 섭동력(perturbation force)이라고 한다. 두 질점 운동의 일반적인 섭동력에는 비구형 중심체, 대기 항력, 추진 추력, 태양 복사 압력, 제3의 질점에 의한 중력 등이 있다. 섭동력은 이체문제의 케플러 궤도에 교란을 가하여 정상적인 궤도에서 벗어나는 현상을 초래한다. 파라미터 변분법(VOP, variation of parameters)은 섭동력에 의해 교란된 동적 시스템의 풀이에 적합한 방법이다. 이 방법은 교란되지 않은 시스템 해(solution)의 상수(constant) 파라미터를 시변(time-varying) 파라미터로 일반화할.. 2024. 8. 28.