본문 바로가기

분류 전체보기159

물리 정보 신경망 (Physics-Informed Neural Network) 유체(fluid)나 탄성체 또는 변형체의 운동 법칙을 표현하거나 또는 여러가지 공학적인 문제를 모델링하고 해석하는데 편미분 방정식(PDE, partial differential equation)이 사용된다. 예를 들면 유체 운동의 지배 방정식인 나비어-스톡스(Navier-Stokes) 방정식을 들 수 있겠다. 편미분 방정식은 특수한 경우를 제외하고는 해석적인 해를 구할 수 없기 때문에 수치적인 방법을 사용한다. 전통적인 수치 방법은 유한차분법(FDM), 유한요소법(FEM), 또는 유한체적법(FVM)등이 있다. 이 방법들은 기본적으로 메쉬(mesh)기반으로서 계산 영역을 수많은 작은 메쉬로 분할하고 각 메쉬 포인트에서 수치해를 얻는 것이다. 이와 같은 수치적 방법은 편미분 방정식의 연구를 크게 촉진했으나 .. 2021. 9. 19.
Navier-Stokes 방정식 - 2 Navier-Stokes 방정식은 비선형 연립 편미분 방정식으로서 이 방정식의 해가 항상 존재하는지 여부도 아직 증명되지 않은 밀레니엄 문제 7개 중의 하나로 꼽힌다. 극히 단순한 경우를 제외하고는 해석적인 해가 존재하지 않을 뿐만 아니라, 수치해(numerical solution) 마저 구하기가 매우 어렵다. 물리기반 기계학습(physics-informed machine learning)이나 바람농장(wind farm)등에서는 유동의 속도가 음속보다 작은 영역을 다루므로 비압축성(incompressible) 가정이 성립한다. 그러면 밀도 \(\rho\) 는 상수이므로 연속 방정식은 다음과 같이 된다. \[ \nabla \cdot \mathbf{V} = 0 \tag{1} \] 식 (1)을 이용하면 Nav.. 2021. 8. 10.
Navier-Stokes 방정식 - 1 Navier-Stokes 방정식은 뉴톤 제2법칙으로부터 유도될 수 있다. 공기를 비롯한 유체는 고체와 달리 정해진 모양이 없기 때문에 뉴톤 제2법칙을 적용하기 위해서는 특별한 아이디어가 필요하다. 공기와 같은 속도로 움직이는 미소(infinitesimal) 체적을 생각해보자. 이 미소체적은 일정한 질량을 가지고 있으며, 질량을 유지하기 위해서 부피는 변할 수 있다고 가정한다. 이 미소체적을 질점으로 보면 뉴톤 제2법칙을 적용할 수 있다. 이 미소체적에 작용하는 힘은 체적력(body force), 압력, 그리고 점성력(viscous force)이 있다. 먼저 체적력에는 대표적으로 중력이 있으며 이밖에 관성력과 전자기력 등이 있다. 체적력 \(d\mathbf{F}_b\) 를 단위 질량당 체적력인 \(\mat.. 2021. 8. 10.
연속 방정식 (continuity equation) 공력(aerodynamic forces)의 측정과 예측을 위해서는 유동장(flow field)에 대한 지식이 필요하다. 유동장은 압력, 밀도, 온도, 속도 등4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 이와 관련된 지배 방정식은 연속 방정식, Navier-Stokes 방정식, 에너지 방정식이며 각각은 질량 보존 법칙, 뉴톤 제2법칙, 그리고 에너지 보존 법칙으로부터 유도할 수 있다. 먼저 연속 방정식(continuity equation)을 유도해보자. 공간상에 고정된 위치에 있는 미소(infinitesimal) 체적이 있다고 가정한다. 질량 보존의 법칙에 의하면 이 미소체적에서 빠져나가는 유량과 들어오는 유량의 차이는 미소체적 내부의 공기 질량의 감소량과 같아야 한다. 위 그림에서 .. 2021. 8. 9.
해밀톤 방정식 (Hamilton’s Equation) 라그랑지 방정식(Lagrange's equation)은 \(n\) 개의 2차 미분 방정식으로 구성되어 있다. 이 방정식을 \(2n\) 개의 1차 미분 방정식으로 재 구성한 것이 해밀톤 방정식(Hamilton's equation)이다. 먼저 일반화된 운동량(generalized momentum)을 다음과 같이 정의한다. \[ p_i= \frac{\partial L}{\partial \dot{q_i}}, \ \ \ \ \ i=1, 2, ... , n \tag{1} \] 이어서 해밀토니안 함수(Hamiltonian function)를 다음과 같이 정의하고, \[ H= \sum_{i=1}^n p_i \dot{q}_i-L(\mathbf{q}, \dot{\mathbf{q}}, t) \tag{2} \] 일반화된 속도.. 2021. 8. 8.
라그랑지 방정식 (Lagrange’s Equation) 라그랑지 방정식(Lagrange's equation)과 해밀톤 방정식(Hamilton's equation)은 해석 동역학(analytical dynamics)의 근간을 이룬다. 라그랑지 방정식은 해밀톤의 원리(Hamilton's principle)를 일반화 좌표로 표현한 2차 미분 방정식이며, 해밀톤 방정식은 라그랑지 방정식으로부터 유도할 수 있는 1차 미분 방정식이다. \(N\) 개의 질점으로 이루어진 홀로노믹(holonomic) 시스템이 있다고 하자. 그러면 \(N\) 개의 질점의 위치벡터를 일반화 좌표 \(q_i\) 를 이용하여 표현하면 다음과 같다. \[ \mathbf{r}_k= \mathbf{r}_k (q_1, q_2, ... , q_n, t), \ \ \ \ \ k=1, 2, ... ,N \t.. 2021. 8. 8.
일반화 좌표 (Generalized Coordinate) \(N\) 개의 질점으로 이루어진 시스템이 있다고 하자. 각 질점의 위치는 \(N\) 개의 위치 벡터 \(\mathbf{r}_k=\mathbf{r}_k (x_k, y_k, z_k ), \ \ k=1,...,N\) 으로 표현할 수 있다. 여기서 \(x_k, y_k, z_k\) 는 \(k\) 번째 질점의 위치를 직교 좌표계(Cartesian coordinate)로 표시한 좌표다. 질점이 운동할 경우 질점의 각 위치를 시간의 함수 \(x_k (t), y_k (t), z_k (t)\) 로 표현하면 된다. 그러면 3차원 공간상에 \(N\) 개의 운동 궤적이 나타날 것이다. 그런데 만약 \(3N\) 차원 공간이 있다면 \(N\) 개의 질점으로 이루어진 시스템의 운동을 한 점의 운동으로 표현할 수 있지 않을까. 이와.. 2021. 8. 8.
해밀톤의 원리 (Hamilton’s Principle) \(N\) 개의 질점으로 이루어진 시스템이 있다고 하자. 각 질점에 작용하는 합력을 \(\mathbf{R}_k\) 이라고 할 때 시스템이 정적 평형 상태에 있다면 \(\mathbf{R}_k=0\) 이다. 그러면 합력이 질점에 하는 가상일(virtual work)은 \(\mathbf{R}_k \cdot \delta \mathbf{r}_k = 0 \) 이다. 전체 시스템에 대한 가상일은 각 질점의 가상일을 모두 합하면 된다. 전체 가상일도 \(0\) 이다. \[ \delta W= \sum_{k=1}^N \mathbf{R}_k \cdot \delta \mathbf{r}_k = 0 \tag{1} \] 이제 합력을 외력 \(\mathbf{F}_k\) 와 구속력 \(\mathbf{F}_k^\prime\) 의 합으로.. 2021. 8. 4.
홀로노믹 구속 (Holonomic Constraint)과 가상 변위 어떤 시스템을 구성하고 있는 질점들이 자유롭게 움직이지 못하고 운동학적으로 제약을 받고 있다면 그 시스템은 구속(constraint)되어 있다고 한다. 그리고 운동학적인 제약사항을 위치, 속도, 시간 등의 함수로 표현한 것을 구속조건 식이라고 한다. 예를 들면 3차원 공간 상에 두 질점이 길이가 \(L\) 인 막대기로 연결되어 있을 경우, 두 질점은 자유롭게 운동하지 못하고 다음 구속조건 식을 만족하면서 운동해야 한다. \[ (x_1-x_2 )^2+(y_1-y_2 )^2+(z_1-z_2 )^2=L^2 \tag{1} \] 구속조건은 구속조건식의 형태에 따라 크게 홀로노믹 구속(holonomic constraint)과 비홀로노믹 구속(nonholonomic constraint)으로 분류된다. 홀로노믹 구속은.. 2021. 8. 4.
포텐셜 에너지 (Potential Energy) 직교 좌표계(Cartesian frame)에서 어떤 질점 \(m\) 에 힘 \(\mathbf{F}\) 가 가해지고 이로 인하여 아주 짧은 시간 \(dt\) 동안에 질점의 위치가 \(\mathbf{r}\) 에서 \(\mathbf{r}+d\mathbf{r}\) 로 변화했을 때, 힘 \(\mathbf{F}\) 가 한 일(work)은 다음과 같이 정의된다. \[ dW = \mathbf{F} \cdot d\mathbf{r} \] 여기서 \(d\mathbf{r}\) 을 극소 변위(infinitesimal displacement)라고 하고 \(dW\) 를 극소 일이라고 한다. 뉴턴 운동 법칙에 의해서 \(\mathbf{F}=m \ddot{\mathbf{r}}\) 이므로 위 식에 대입하면 일 \(dW\) 는 다음과 같.. 2021. 8. 3.