본문 바로가기

유도항법제어/비행제어31

[Continuous-Time] 제어가능성 그래미안 시스템 \((A, B)\) 의 제어가능성 그래미안(controllability gramian) \(W_c\) 는 다음과 같이 정의한다 (참고로 여러 문헌을 보면 그래미안을 grammian 으로 표기 한 것도 있고 gramian 으로 표기 한 것도 있다).  \[ W_c (t)= \int_0^t e^{A \tau} BB^T e^{A^T \tau} \ d \tau \tag{1} \]   시스템이 제어가능하기 위한 필요충분 조건은 임의의 \(t \gt 0\) 에 대해서 \(W_c (t) \gt 0\) 이라는 것은 이미 증명하였다 (https://pasus.tistory.com/336).    식 (1)의 그래미안 행렬은 다음 미분방정식의 해다.  \[ \dot{W}_c (t)=AW_c+W_c A^T+B.. 2024. 7. 25.
[Continuous-Time] 안정성과 리야프노프 방정식 행렬 \(A\) 의 모든 고유값이 음의 실수부를 갖는다면 행렬 \(A\) 는 안정(stable)하다고 한다. 만약 행렬 \(A\) 가 안정하다면 다음 리야프노프 방정식(Lyapunov equation),  \[ A^T P+PA=-N \tag{1} \]   은 모든 행렬 \(N\) 에 대해서 유일해를 갖고, 그 해는 다음과 같다.  \[ P= \int_0^\infty e^{A^T t} N e^{At} \ dt \tag{2} \]   증명은 다음과 같다. 먼저 식 (2)를 (1)에 대입한다.  \[ \begin{align}A^T P+PA &= \int_0^\infty A^T e^{A^T t} N e^{At} \ dt + \int_0^\infty e^{A^T t} N e^{At} .. 2024. 7. 25.
[Continuous-Time] 제어가능성과 PBH 테스트 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \dot{\mathbf{x}}=A\mathbf{x}+B\mathbf{u} \tag{1} \]   여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\) 는 상태변수, \(\mathbf{u}(t) \in \mathbb{R}^p\) 는 제어입력이다. 이 시스템이 제어불가능하다면 제어불가능한 고유값(uncontrollable eigenvalue)이 존재한다 (https://pasus.tistory.com/337). 그렇다면 구체적으로 \(A\) 의 고유값 중 어떤 값이 제어불가능한 고유값일까. 이를 판별하기 위한 방법으로 PBH 테스트(Popov-Belevitch-Hautus test)가 있다.    PBH 테스트에 의하면, 어떤 복소수 .. 2024. 7. 24.
[Continuous-Time] 제어가능한 부분공간 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \begin{align} \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \tag{1} \end{align} \]   여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\) 는 상태변수, \(\mathbf{u}(t) \in \mathbb{R}^p\) 는 제어입력이다. 이 시스템의 제어가능한 부분공간(controllable subspace) \(\chi_c\) 는 제어가능성 행렬(controllability matrix)의 레인지(range, 치역)로 정의한다.  \[ \begin{align} \chi_c=range(Q_c) \tag{2} \end{align} \]  여기서 제어가능성 행렬 \(Q_c\) 는.. 2024. 7. 23.
[Continuous-Time] 제어가능성 (Controllability) 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \begin{align} \dot{\mathbf{x}} =A \mathbf{x}+B \mathbf{u} \tag{1} \end{align} \]   여기서 \( \mathbf{x}(t) \in \mathbb{R}^n \) 는 상태변수, \( \mathbf{u}(t) \in \mathbb{R}^p \) 는 제어입력이다. 만약 유한 시간 \( t_1 \lt \infty \) 안에 임의의 초기 상태 \(\mathbf{x}(0)=\mathbf{x}_0\) 에서 임의의 목표 상태(target state) \( \mathbf{x}(t_1 )=\mathbf{x}_1\) 으로 시스템의 상태를 움직이도록 하는 제어입력 \(\mathbf{u}(t), \ t \in .. 2024. 7. 16.
연속시간 상태공간 방정식의 이산화 (Discretization) 보통 제어기는 디지털 방식으로 구현되고 있다. 이 방식에서는 제어기의 출력도 디지털 신호이기 때문에 일정한 시간 간격에서만 사용할 수 있다. 즉 이산시간(discrete-time) 단계에서만 새로운 제어입력 값을 사용할 수 있다. 하지만 제어 대상 시스템이 연속시간(continuous-time) 시스템이라면 연속적인 입력이 필요하기 때문에 간헐적으로 계산되는 제어 입력을 사용할 수는 없다. 이 때 일반적으로 사용하는 방법은 다음 샘플링 시간까지 제어입력 값을 일정하게 유지시키는 것이다. 이를 0차홀드(ZOH, zero-order hold) 방식이라고 한다. 물론 더 복잡한 유형의 홀드 연산도 가능하지만, ZOH가 가장 널리 사용된다. 연속시간 (continuous-time) 선형 시불변 (LTI, lin.. 2024. 2. 12.
근궤적법 (Root locus method)에서 K→∞ 일 때의 근 두 개의 다항식 \(N(s)\) 와 \(D(s)\) 가 주어졌을 때, 근궤적법(root locus method)은 \(K\) 가 \(0\) 부터 \(\infty\) 까지 변할 때 다음 다항식의 근(root)을 복소평면 위에 스케치하는 방법이다. \[ 1+ K \frac{N(s)}{D(s)} = 0 \tag{1} \] 근궤적법은 다음과 같은 가정하에 수행된다. (1) \(N(s)\) 와 \(D(s)\) 의 계수는 모두 실수(real number)이고 최고차항의 계수는 \(1\)이다. (2) \(N(s)\) 와 \(D(s)\) 의 근은 알고 있다. (3) \(N(s)\) 와 \(D(s)\) 는 공통 근이 없다. (4) \(N(s)\) 의 차수(order)는 \(D(s)\) 의 차수보다 작거나 같다. 여기서 .. 2023. 11. 3.
상태공간 방정식과 전달함수 모든 선형 시불변 (LTI, linear time-invariant) 시스템은 다음과 같이 상태공간 방정식(state-space equation)으로 표현할 수 있다. \[ \begin{align} \dot{\mathbf{x}}(t) &=A \mathbf{x}(t)+B\mathbf{u}(t) \tag{1} \\ \\ \mathbf{y}(t) &=C \mathbf{x}(t)+D \mathbf{u}(t), \ \ \ t \ge 0 \end{align} \] 여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\), \(\mathbf{u}(t) \in \mathbb{R}^p\), \( \mathbf{y}(t) \in \mathbb{R}^q\) 이고 \(A, B, C, D\) 는 상수 행렬이다. 이.. 2023. 9. 22.
상태천이행렬 (State Transition Matrix) 과 Floquet 정리 다음과 같이 선형 시불변 (LTI, linear time-invariant) 시스템이 있다. \[ \dot{\mathbf{x}}(t)=A \mathbf{x}(t) \tag{1} \] 여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\) 는 상태변수, \(A \in \mathbb{R}^{n \times n}\) 는 상수 행렬이다. 이 시스템의 해는 다음과 같다 (https://pasus.tistory.com/234). \[ \mathbf{x}(t)=e^{A(t-t_0)} \mathbf{x} (t_0) \tag{2} \] 이번에는 다음과 같은 선형 시변(LTV, linear time-varying) 시스템의 해를 구해보자. \[ \dot{\mathbf{x}}(t)=A(t) \mathbf{x}.. 2023. 6. 30.
쿼터니언 기반 자세제어 질량중심을 기준으로 강체의 회전 운동방정식은 다음과 같다 (https://pasus.tistory.com/191). \[ \vec{M}_G= \bar{I}_G \cdot \frac{ ^b d ^i \vec{\omega}^b}{dt} + {^i \vec{\omega}^b} \times (\bar{I}_G \cdot { ^i \vec{\omega}^b }) \tag{1} \] 여기서 \(\{i\}\) 는 관성좌표계, \(\{b\}\) 는 강체좌표계, \(^i \vec{\omega}^b\) 는 강체좌표계의 각속도 벡터, \(G\) 는 강체의 질량중심, \(\bar{I}_G\) 는 질량중심점에 대한 관성 다이아딕, \(\vec{M}_G\) 는 강체에 작용하는 질량 중심점에 대한 모멘트이다. 식 (1)을 강체좌표.. 2023. 3. 18.