본문 바로가기

유도항법제어/최적제어16

[MPC-2] MPC를 위한 두가지 QP 모델 - 1 MPC는 다음과 같은 제약조건을 갖는 선형 시스템에서 \[ \begin{align} & \mathbf{x}_{t+1}=A \mathbf{x}_t+B \mathbf{u}_t \tag{1} \\ \\ & \mathbf{y}_t=C \mathbf{x}_t \\ \\ & \ \ \ \ \ \mathbf{u}_{min} \le \mathbf{u}_{t+i} \le \mathbf{u}_{max}, \ \ \ i=0, ... , N-1 \tag{2} \\ \\ & \ \ \ \ \ \mathbf{y}_{min} \le \mathbf{y}_{t+i} \le \mathbf{y}_{max}, \ \ \ i=1, ... , N \end{align} \] 매 시간 스텝마다 다음 목적함수가 일정 성능 예측구간 \([t, \ t.. 2022. 11. 30.
[MPC-1] 모델예측제어 개요 동적 최적화(dynamic optimization) 문제는 최적제어(optimal control) 문제라고도 하는데 매우 광범위한 영역에서 사용되고 있다. 예를 들면 인공위성을 궤도에 올리는 위한 가장 효율적인 연료 사용 전략이나 화학 공정 시설을 가동하는 가장 경제적인 방법을 찾는 문제 등을 들 수 있다. 이러한 동적 최적화 문제의 기본 가정은 동적 모델(dynamic model)이 주어진다는데 있다. 동적 모델의 예로서 다음과 같이 이산시간(discrete-time) 차분 방정식(difference equation)으로 표현된 비선형 시스템을 들 수 있다. \[ \mathbf{x}_{t+1}=\mathbf{f}(\mathbf{x}_t, \mathbf{u}_t) \tag{1} \] 여기서 \(\math.. 2022. 11. 28.
[PSOC-7] 유사 스펙트럴 방법 예제 유사 스펙트럴(pseudospectral) 방법은 다음과 같이 경계조건을 갖는 미분방정식이 있을 때, \[ \begin{align} & \mathcal{D} \mathbf{x}(t)=\mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 방정식의 미지해 \(\mathbf{x}(t)\) 를 다음과 같은 형식을 갖는 \(\mathbf{X}(t)\) 로 근사적으로 구하는 방법이다. \[ \mathbf{x}(t) \approx \mathbf{X}(t)= \sum_{i=1}^N \mathbf{c}_i .. 2022. 4. 24.
[PSOC-6] 유사 스펙트럴 방법 (Pseudospectral Method) 다음과 같이 경계조건을 갖는 미분방정식이 있다고 하자. \[ \begin{align} & \mathcal{D} \mathbf{x}(t)= \mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 여기서 \(\mathcal{D}\) 는 미분, \(\mathcal{B}\) 는 경계조건을 뜻하는 연산자이다. 위 미분방정식의 미지해 \(\mathbf{x}(t)\) 를 근사적으로 구한 해(approximate solution) \(\mathbf{X}(t)\) 를 다음과 같은 형식으로 구하고자 한다. \[.. 2022. 4. 23.
[PSOC-5] 가우시안 쿼드래처 (Gaussian Quadrature) 가우시안 쿼드래처(Gaussian quadrature)는 구간 \([-1, 1]\) 에서 어떤 함수 \(f(\tau)\) 의 적분값을 적분 구간내의 특정 지점에서의 함수값의 가중치 합으로 계산하는 수치적분 방법이다. \[ \int_{-1}^1 f(\tau) \ d \tau \approx \sum_{i=1}^N w_i f(\tau_i) \tag{1} \] 여기서 적분 구간내의 특정 지점인 \(\tau =\tau_1, \tau_2, ..., \tau_N\) 을 쿼드래처 포인트라고 하고, \(w_i\) 를 쿼드래처 포인트의 가중치(weighting)이라고 한다. 가우시안 쿼드래처의 정확도는 쿼드래처 포인트의 갯수와 점 사이의 간격에 달려있다. 함수 \(f(\tau)\) 를 \((N-1)\) 차 라그랑지 보간 .. 2021. 12. 18.
[PSOC-4] 라그랑지 보간 다항식 \(N\) 개의 임의의 점 \(t_i\) 에서 함수 \(f(t)\) 의 값 \(f(t_i)\) 가 주어졌을 때, \(N\) 개의 점 \(f(t_i)\) 를 지나는 \((N-1)\) 차 라그랑지 보간 다항식(Lagrange interpolation polynomials) \(p(t)\) 는 다음과 같이 주어진다. \[ f(t) \approx p(t) = \sum_{i=1}^N f(t_i ) L_i (t) \tag{1} \] 여기서 \(t_i\) 를 보간점(interpolating point)라고 한다. 또한 \(L_i (t)\) 를 \((N-1)\) 차 라그랑지 기저 다항식(Lagrange basis polynomials) 또는 라그랑지 다항식이라고 하며 다음과 같이 정의한다. \[ L_i (t)= \pr.. 2021. 12. 17.
[PSOC-3] 가우스 포인트 (Gauss Points) 가우스 포인트(Gauss points)는 \([-1, 1]\) 의 구간에서 정의되는 점들의 집합으로서 점(point)간의 간격이 서로 다르다는 특징이 있다. 가우스 포인트는 라그랑지 보간 다항식(Lagrange interpolation polynomials)의 보간점(interpolating point), 가우스 쿼드래처(Gauss quadrature)의 쿼드래처 포인트(quadrature point), 그리고 유사 스펙트럴 방법(pseudospectral method)의 콜로케이션 포인트(collocation point)로 사용된다. 가우스 포인트는 다음 3가지가 있으며, 각각 다음과 같이 정의된다. (a) LGL (Legendre-Gauss-Lobatto) 포인트: LGL 포인트는 \((N-1)\) .. 2021. 12. 16.
[PSOC-2] 르장드르 다항식 (Legendre Polynomials) 르장드르 다항식(Legendre polynomials)은 다음 르장드르 미분방정식을 만족하는 다항식 \(P_N (\tau)\) 이다. \[ (1-\tau^2 ) \ddot{P}_N (\tau)-2 \tau \dot{P}_N (\tau)+N(N+1) P_N (\tau)=0, \ \ \ \ N=0, 1, 2, ... \tag{1} \] 여기서 독립변수 \(\tau\) 는 \([-1, 1]\) 의 범위를 갖는다. \(P_N (\tau)\) 을 \(N\) 차 르장드르 다항식이라고 한다. \(N=0\) 일 때의 미분 방정식의 해, 즉 \(0\) 차 르장드르 다항식은 \(P_0 (\tau)=1\) 이고, \(N=1\) 일 때의 해는 \(P_1 (\tau)=\tau\) 이다. \(N \ge 2\) 일 때는 다음과 같.. 2021. 12. 15.
[PSOC-1] 유사 스펙트럴 기반 최적제어 개요 대부분의 연속시간 최적제어 문제는 해석적으로 풀기가 매우 어렵기 때문에 수치적인 방법이 사용된다. 최적제어에 사용되는 두 가지 유형의 수치적 방법에는 간접방법(indirect method)과 직접방법(direct method)이 있다. 간접방법에서는, 우선 변분법(calculus of variation)을 사용하여 최적 필요조건을 유도한 후, 2점 경계값 문제(TPBVP, two-point boundary value problem) 또는 다중점 경계값 문제(MPBVP, multi-point boundary value problem)를 푼다. 이 방법의 주요 장점은 높은 정확도와 빠른 수렴이다. 그러나 몇 가지 단점이 있다. 첫째, 복잡한 제약 조건을 고려할 때, 필요한 조건에 대한 해석식을 도출하는 것이.. 2021. 12. 15.
오일러-라그랑지 방정식과 브라키스토크론 문제의 풀이 상단 지점 \((0,0)\)에 정지해 있던 물체가 경로 \(y(x)\)를 따라 마찰없이 중력의 영향으로만 미끄러져서 하단 지점 \((x_f,y_f)\)까지 도착하는데 걸리는 시간은 다음과 같이 계산된다. \[ t= \int_0^{x_f} \frac{ \sqrt{ 1+ \left( \frac{dy}{dx} \right)^2 } }{ \sqrt{2gy} } \ dx \] 여기서 시간 \(t\)를 최소로 만드는 경로 함수 \(y(x)\)를 계산하는 것이 브라키스토크론(Brachistochrone) 문제다. 시간 \(t\)는 함수 \(y(x)\)를 변수로 하는 functional이다. 이 값을 최소화하는 함수 \(y(x)\)를 찾는 문제이므로 변분법의 문제이다. 다음과 같은 functional \(F(y, y^.. 2021. 1. 13.