본문 바로가기

유도항법제어95

[Continuous-Time] 제어가능성 그래미안 시스템 \((A, B)\) 의 제어가능성 그래미안(controllability gramian) \(W_c\) 는 다음과 같이 정의한다 (참고로 여러 문헌을 보면 그래미안을 grammian 으로 표기 한 것도 있고 gramian 으로 표기 한 것도 있다).  \[ W_c (t)= \int_0^t e^{A \tau} BB^T e^{A^T \tau} \ d \tau \tag{1} \]   시스템이 제어가능하기 위한 필요충분 조건은 임의의 \(t \gt 0\) 에 대해서 \(W_c (t) \gt 0\) 이라는 것은 이미 증명하였다 (https://pasus.tistory.com/336).    식 (1)의 그래미안 행렬은 다음 미분방정식의 해다.  \[ \dot{W}_c (t)=AW_c+W_c A^T+B.. 2024. 7. 25.
[Continuous-Time] 안정성과 리야프노프 방정식 행렬 \(A\) 의 모든 고유값이 음의 실수부를 갖는다면 행렬 \(A\) 는 안정(stable)하다고 한다. 만약 행렬 \(A\) 가 안정하다면 다음 리야프노프 방정식(Lyapunov equation),  \[ A^T P+PA=-N \tag{1} \]   은 모든 행렬 \(N\) 에 대해서 유일해를 갖고, 그 해는 다음과 같다.  \[ P= \int_0^\infty e^{A^T t} N e^{At} \ dt \tag{2} \]   증명은 다음과 같다. 먼저 식 (2)를 (1)에 대입한다.  \[ \begin{align}A^T P+PA &= \int_0^\infty A^T e^{A^T t} N e^{At} \ dt + \int_0^\infty e^{A^T t} N e^{At} .. 2024. 7. 25.
[Continuous-Time] 제어가능성과 PBH 테스트 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \dot{\mathbf{x}}=A\mathbf{x}+B\mathbf{u} \tag{1} \]   여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\) 는 상태변수, \(\mathbf{u}(t) \in \mathbb{R}^p\) 는 제어입력이다. 이 시스템이 제어불가능하다면 제어불가능한 고유값(uncontrollable eigenvalue)이 존재한다 (https://pasus.tistory.com/337). 그렇다면 구체적으로 \(A\) 의 고유값 중 어떤 값이 제어불가능한 고유값일까. 이를 판별하기 위한 방법으로 PBH 테스트(Popov-Belevitch-Hautus test)가 있다.    PBH 테스트에 의하면, 어떤 복소수 .. 2024. 7. 24.
[Continuous-Time] 제어가능한 부분공간 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \begin{align} \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \tag{1} \end{align} \]   여기서 \(\mathbf{x}(t) \in \mathbb{R}^n\) 는 상태변수, \(\mathbf{u}(t) \in \mathbb{R}^p\) 는 제어입력이다. 이 시스템의 제어가능한 부분공간(controllable subspace) \(\chi_c\) 는 제어가능성 행렬(controllability matrix)의 레인지(range, 치역)로 정의한다.  \[ \begin{align} \chi_c=range(Q_c) \tag{2} \end{align} \]  여기서 제어가능성 행렬 \(Q_c\) 는.. 2024. 7. 23.
[Continuous-Time] 제어가능성 (Controllability) 다음과 같은 선형 시불변(LTI) 시스템이 있다.  \[ \begin{align} \dot{\mathbf{x}} =A \mathbf{x}+B \mathbf{u} \tag{1} \end{align} \]   여기서 \( \mathbf{x}(t) \in \mathbb{R}^n \) 는 상태변수, \( \mathbf{u}(t) \in \mathbb{R}^p \) 는 제어입력이다. 만약 유한 시간 \( t_1 \lt \infty \) 안에 임의의 초기 상태 \(\mathbf{x}(0)=\mathbf{x}_0\) 에서 임의의 목표 상태(target state) \( \mathbf{x}(t_1 )=\mathbf{x}_1\) 으로 시스템의 상태를 움직이도록 하는 제어입력 \(\mathbf{u}(t), \ t \in .. 2024. 7. 16.
두빈스 경로 (Dubins Path) - 2 RSL 경로는 시작점 \(\mathbf{p}_1\) 에서 오른쪽 원을 타고 우회전한 다음 직진하고 끝점 \(\mathbf{p}_2\) 에 도착할 때까지 왼쪽에 접한 원에서 다시 좌회전하는 것으로 구성된다. 아래 그림에는 원호에서 직선으로의 전환점인 풀아웃(pull-out) 지점 \(\mathbf{q}_1\) 과 직선에서 원호로 전환점인 휠오버(wheel-over) 지점 \(\mathbf{q}_2\) 와 이를 연결하는 직선을 각각 보여준다.    풀아웃 지점 \(\mathbf{q}_1\) 과 휠오버 지점 \(\mathbf{q}_2\) 는 다음과 같이 계산할 수 있다.  \[ \begin{align} \mathbf{q}_1 &= \mathbf{c}_1 + ( \mathbf{q}^\prime_1 - \math.. 2024. 5. 25.
두빈스 경로 (Dubins Path) - 1 평면상에서 시작점과 끝점을 연결하는 최단거리 경로를 구하려고 한다. 단 시작점과 끝점에서 각각 출발 방향과 도착 방향이 정해져 있고 경로가 가질 수 있는 최대 곡률(curvature)에 제한이 있는 경우다. 이 문제는 제약조건이 있는 최적화 문제로서 최단거리 경로는 최대 곡률을 갖는 원형 호와 직선을 결합하여 만들어진다는 것이 증명되었다. 이 최단거리 경로를 두빈스 경로 (Dubins path)라고 한다. 두빈스 경로는 기하학적인 방법으로 간단히 생성할 수 있기 때문에 이동 로봇, 드론, 무인 잠수정 등의 운동체 경로 계획 방법으로 널리 사용되고 있다. 두빈스 경로는 CSC 또는 CCC 경로 중 하나다. 여기서 C는 원호(circular arc), S는 직선(straight line)을 나타낸다. CCC.. 2024. 5. 25.
[Continuous-Time] 경로 제약조건이 있는 최적제어 문제 일반적인 최적제어 문제 (https://pasus.tistory.com/231)는 초기 및 최종 상태변수 등식 제약조건과 운동방정식을 만족하면서 목적함수를 최소화하는 제어입력을 결정하는 문제였다.  \[ \begin{align} \min J = \phi ( & \mathbf{x}(t_0 ), \mathbf{x}(t_f ), t_0, t_f ) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) \ dt \tag{1} \\ \\ \mbox{ subject to : } \ & \dot{\mathbf{x}} (t)= \mathbf{f}( \mathbf{x}(t), \mathbf{u}(t), t) \\ \\ & \psi (\mathbf{x}(t_0 ), \mathbf.. 2024. 5. 7.
화성 착륙 과정과 진입 운동방정식 NASA가 지금까지 화성에 착륙시킨 착륙선은 1976년 바이킹 1호부터 시작하여 2021년 2월 18일에 착륙에 성공한 Mars2020/퍼서비어런스에 이르기까지 모두 9개다. 초창기에는 무유도(unguided) 탄도 대기권 진입 방식을 사용했는데, 이는 착륙 지점의 과학적 가치를 고려하지 않고 화성에 안전하게 착륙하는 것을 목표로 한 이른바 1세대 시스템이었다. 1세대 화성 진입, 하강 및 착륙(EDL, entry, descent and landing) 시스템의 착륙 오차(landing uncertainty ellipse)는 \(150 \times 20 ~ km\) 정도로서 위험한 지형과 과학적 가치가 높은 지역에 착륙할 수 있는 능력이 없었다.    2012년 8월 게일(Gale) 크레이터에 착륙한 M.. 2024. 4. 28.
[INS] 관성항법시스템 오차 방정식 (INS Error Equations) 관성항법시스템(INS)은 초기 위치, 속도 및 자세 정보와 가속도계 및 자이로스코프에서 얻어지는 측정 정보를 이용하여 현재의 위치, 속도 및 자세 정보를 제공하는 시스템이다. INS는 항법 좌표계에서 가속도를 적분하여 속도와 위치를 결정하는데, 가속도 신호는 동체 좌표계에서 측정되므로 이 값을 동체 좌표계에서 항법 좌표계로 변환해야 한다. 그런데 동체 좌표계와 항법 좌표계간에는 자세 변화가 있으므로 두 좌표계간의 자세각을 알아야 하고, 이를 위해서는 동체 좌표계에서 측정된 자이로스코프 신호를 적분해야 한다.    따라서 INS는 위치 결정을 위해서는 세 번의 수치적분, 속도 결정을 위해서는 두 번의 수치적분, 자세 결정을 위해서는 한 번의 수치적분이 수행되어야 한다. 이와 같은 수치적분 때문에 INS의 .. 2024. 3. 15.