본문 바로가기

유도항법제어/데이터기반제어11

[DMD-3] DMDior 입출력이 포함된 확장 DMD인 DMDio (DMD with input/output) 알고리즘을 유도해 보았다 (https://pasus.tistory.com/225). 원래 시스템을 식별한 후에 축소 모델 (ROM, reduced order model)로 근사화 하는 순서였다. 이번에는 이와 약간 다른 접근 방법을 사용해 보고자 한다. 바로 축소 모델을 식별하는 방법이다. 이러한 방법을 DMDior (DMDio for reduced order model)라고 한다. 식별하고자 하는 미지의 이산시간 시스템이 식 (1)과 같이 표현된다고 하자. \[ \begin{align} \mathbf{x}_{k+1} &= A \mathbf{x}_k+B \mathbf{u}_k \tag{1} \\ \\ \mathbf{y}_.. 2022. 11. 8.
[DMD-2] DMDio 표준 DMD의 한 가지 제한 사항은 시스템의 운동을 바꾸거나 측정할 수 있는 외부 입력과 출력이 포함된 모델을 생성할 수 없다는 것이다. 이제 표준 DMD 방법을 확장하여 입력과 출력이 포함된 시스템 모델을 식별해 보도록 한다. 이와 같이 입출력이 포함된 확장 DMD를 DMDio (DMD with input/output)이라고 한다. 모델 입력과 출력이 포함된 시스템의 동적 특성을 이해하는 것은 제어기 설계 및 센서 배치 문제의 기본 전제 사항이다. 식별하고자 하는 미지의 이산시간 시스템이 식 (1)과 같이 표현된다고 하자. \[ \begin{align} & \mathbf{x}_{k+1}=A \mathbf{x}_k+B \mathbf{u}_k \tag{1} \\ \\ & \mathbf{y}_k=C \mat.. 2022. 10. 31.
[DMD-1] 동적모드분해 (Dynamic Mode Decomposition) 전통적인 제어이론은 시스템의 수학적인 운동 모델을 요구한다. 운동 모델은 물리 법칙으로부터 해석적으로 유도할 수 있지만 입출력 데이터에 기반해서 수치적으로 얻을 수도 있다. 수치 데이터로부터 시스템의 운동 모델을 구하는 것을 시스템 식별(system identification) 또는 모델 식별이라고 한다. 시스템 식별 방법에는 ERA, OKID, QMC등 몇 가지가 있는데, 그 중 하나가 동적모드분해 (DMD, dynamic mode decomposition)이다. DMD는 수치 시뮬레이션 또는 스냅샷(snapshot) 측정 데이터를 사용하여 선형 시스템의 수학적 모델을 식별하고 동적 특성을 추출하는 기법이다. 식별하고자 하는 미지의 이산시간 시스템이 식 (1)과 같이 표현된다고 하자. 일단 자율 시스템.. 2022. 10. 26.
[POD-4] Gappy POD 매트랩 예제 Gappy POD 방법을 이용하여 손상된 얼굴 사진을 복구해 보자. 코드는 매트랩으로 작성했다. (1) Extended Yale Face Database B에서 36명의 정면 얼굴 사진을 추출하여 스냅샷 행렬을 만든다. 데이터셋의 샘플 평균을 계산한다. X = yaleFace(:, 1:36); % 32,256 by 36 mu = mean(X,2); (2) 모든 데이터셋을 다음과 같이 치환한다. \[ \mathbf{y}^{(i)} = \mathbf{x}^{(i) } - \mathbf{\mu} \] (3) 데이터셋의 스냅샷 행렬을 만든다. \[ Y = [ \mathbf{y}^{(1) } \ \mathbf{y}^{(2) } \ \cdots \ \mathbf{y}^{(m) } ] \ \in \mathbb{R}^.. 2021. 3. 1.
[POD-3] 개피 적합직교분해 (gappy POD) 적합직교분해(POD) 또는 주성분 분석(PCA)은 \(n\)차원 공간상에서 \(d\)개의 POD 모드(mode) \(\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_d\)로 구성된 부분 공간에 데이터 벡터 \(\mathbf{y}(t)\)를 투사(projection)할 때 투사 오차가 최소가 되도록 POD 모드를 결정하는 알고리즘이다. \[ \begin{align} \mathbf{y}^{(i)} & \approx \sum_{j=1}^d a_{ij} \mathbf{w}_j \\ \\ &= \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_d \end{bmatrix} \begin{bmatrix} a_{i1} \\.. 2021. 3. 1.
[POD-2] 스냅샷 적합직교분해 (snapshot POD) 고전 적합직교분해(classical POD)는 공간은 이산화시켰지만 시간은 연속적이다. 하지만 실제 유체역학이나 구조해석 문제의 경우 벡터 필드는 일정한 시간 간격의 싯점에서 수치해석으로 계산된 데이터나 또는 측정된 데이터로 주어진다. 고전 POD의 또 다른 문제점은 차원이 \(n=10^8 \sim 10^{10}\)에 달하는 매우 고차원 행렬의 고유값과 고유벡터를 계산해야 하는데 있다. 이 정도 규모의 차원에서 이를 계산하는 것은 거의 불가능하다. 이러한 고전 POD의 단점을 극복하기 위한 방안으로 스냅샷(snapshot) POD가 개발되었다. 스냅샷 POD는 벡터 필드의 공간 뿐만 아니라 시간도 이산화시켰다는 데 특징이 있다. 스냅샷이란 일정한 싯점에서 수집한 데이터의 집합을 뜻한다. 먼저 벡터 필드 .. 2021. 3. 1.
[POD-1] 고전 적합직교분해 (classical POD) 적합직교분해(POD, proper orthogonal decomposition)은 본래 난류 유동(turbulent flow)에서 가장 에너지가 높은 모드를 추출하기 위해서 도입된 수학적인 기법이다. \(\mathbf{q}(\mathbf{p},t)\)를 위치벡터 \(\mathbf{p}\)와 시간 \(t\)를 독립변수로 하는 벡터 필드 (예를 들면 유동장에서의 속도 벡터)라고 하자. 이 벡터의 시간 평균을 \(\bar{\mathbf{q}}(\mathbf{p})\)라고 하면 벡터 필드가 평균을 기준으로 변동하는 성분(unsteady component)은 다음과 같이 기저함수(basis function)의 선형 조합으로 나타낼 수 있다. \[ \mathbf{q}(\mathbf{p},t)-\bar{\mathbf.. 2021. 2. 28.
[PCA–4] PCA 예제: Eigenfaces Extended Yale Face Database B 라는 얼굴 사진을 잔뜩 모아 놓은 사이트가 있다. http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html 38명의 사람 얼굴을 9개의 자세 및 64개의 서로 다른 조명 조건에서 촬영한 사진으로 구성 되어있는데 Cropped Images에 있는 사진들은 높이가 192 픽셀 너비가 168픽셀로 된 흑백 사진이다. 이 얼굴 사진들은 연구 목적으로 자유롭게 사용할 수 있다. PCA 알고리즘을 얼굴 사진 라이브러리에 적용하여 이른바 eigenfaces라는 축소 차원 좌표축을 구하고 사진 데이터를 eigenfaces로 표현하고 또 복원해 보도록 하자. 먼저 36명의 정면 얼굴 사진만을 추출하여 스냅샷 행렬을 .. 2021. 2. 24.
[PCA–3] 주성분 분석 (PCA) 특징 n차원 공간 상의 m개 데이터 \(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)} \in \mathbb{R}^n\) 에 대한 주성분 분석(PCA) 알고리즘을 정리하면 다음과 같다. (1) 데이터셋의 샘플 평균을 계산한다. \[ \mathbf{\mu} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^{(i)} \] (2) 모든 데이터셋을 다음과 같이 치환한다. \[ \mathbf{y}^{(i)}= \mathbf{x}^{(i)} - \mathbf{\mu} \] (3) 데이터셋의 스냅샷(snapshot) 행렬을 만든다. \[ Y = \begin{bmatrix} \mathbf{y}^{(1)} & \mathbf{y}^{(2) } & \cd.. 2021. 2. 20.
[PCA–2] 주성분 분석 (PCA) 알고리즘 유도 \(m\)개의 n차원 데이터 \(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)} \in \mathbb{R}^n\) 이 주어졌다고 하자. 이 데이터를 d차원 공간에 투사해서 차원(dimension)을 축소하는 것이 목적이다. 그렇다면 n차원의 부분 공간인 d차원 (\(d \lt n\))에서 직교 좌표축의 방향을 어떻게 결정해야 데이터의 정보 손실을 최소화할 수 있을까. 다음 그림은 2차원 데이터의 예를 도시한 것이다. 우선 새로운 좌표축의 원점을 \(m\)개 데이터의 평균점 \(\mathbf{\mu}\)에 위치시키도록 하자. \[ \mathbf{\mu} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^{(i)} \] 그리고 모든 데.. 2021. 2. 19.