본문 바로가기

항공우주/항공역학7

Vorticity 미분 방정식 VPM (Vortex Particle Method)은 비압축성 유체에 대한 Navier-Stokes 방정식을 풀기 위한 효율적인 수치 기법으로서, 격자가 필요 없기 (meshless) 때문에 유한체적법 (FVM, finite volume method)과 같은 기존의 격자(mesh) 기반 수치 기법에 대한 대안으로서 주목받고 있다. VPM은 Vorticity 미분 방정식을 지배 방정식으로 사용하기 때문에 이를 유도해 보고자 한다. 먼저 체적력을 무시할 수 있을 때 비압축성(incompressible) 뉴톤유체에 대한 Navier-Stokes 방정식은 다음과 같다. \[ \begin{align} & \nabla \cdot \mathbf{V} = 0 \tag{1} \\ \\ & \frac{\partial \m.. 2022. 5. 29.
Vorticity의 정의 어떤 유동장에서 운동하는 미소 유체요소(infinitesimal fluid element)를 생각해보자. 아래 그림과 같이 이 유체요소는 운동하면서 회전할 수도 있고 모양이 변할 수도 있다. 이 회전 및 모양의 변화 정도는 유체의 속도장에 따라 다르다. 여기서는 유체요소의 회전에 집중하여 유체의 속도장과 유체요소의 회전 각속도(angular velocity)의 관계에 대해서 알아보고자 한다. 논의를 간단하게 하기 위해서 일단 유체가 2차원 평면상을 흐른다고 하자. 아래 그림과 같이 시간 \(t\) 에서 이 유체요소의 모양이 직사각형이라고 가정한다. 시간이 \(\Delta t\) 만큼 흐르면 유체요소의 꼭지점 B와 C는 꼭지점 A에 대해서 각각 상대 위치가 변화한다. 유체요소의 각 점의 상대 속도가 그림에.. 2022. 5. 29.
유동장의 시간미분에 대해서 유동장(flow field)은 압력, 밀도, 온도, 속도 등 4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 예를 들면 밀도는 기준 좌표계에서의 위치 \((x,y,z)\) 와 함께 시간 \(t\) 의 함수로 주어진다. \[ \rho = \rho (x,y,z,t) \tag{1} \] 따라서 어떤 파라미터를 시간으로 미분할 경우 두 종류의 도함수(derivative)가 나온다. 바로 \(d/dt\) 와 \(\partial /\partial t\) 이다. 두 시간미분의 물리적인 의미를 알아보자. 아래 그림과 같이 어떤 유동장에서 운동하는 유체요소(fluid element)를 생각해보자. 시간 \(t_1\) 일 때 이 유체요소는 위치 \((x_1,y_1,z_1)\) 에 있다고 하자. 그러면 이.. 2022. 5. 24.
Navier-Stokes 방정식의 벡터 표현 Navier-Stokes 방정식은 뉴톤 제2법칙을 유체에 적용한 것으로서 다음과 같이 유도되었다. \[ \begin{align} & \rho \left( \frac{\partial u}{\partial t}+ \mathbf{V} \cdot \nabla u \right) = -\frac{\partial p}{\partial x} +\frac{\partial \tau_{xx}}{\partial x} +\frac{\partial \tau_{yx}}{\partial y}+\frac{\partial \tau_{zx}}{\partial z}+\rho f_x \tag{1} \\ \\ & \rho \left( \frac{\partial v}{\partial t}+ \mathbf{V} \cdot \nabla v \rig.. 2021. 10. 22.
Navier-Stokes 방정식 - 2 Navier-Stokes 방정식은 비선형 연립 편미분 방정식으로서 이 방정식의 해가 항상 존재하는지 여부도 아직 증명되지 않은 밀레니엄 문제 7개 중의 하나로 꼽힌다. 극히 단순한 경우를 제외하고는 해석적인 해가 존재하지 않을 뿐만 아니라, 수치해(numerical solution) 마저 구하기가 매우 어렵다. 비압축성(incompressible) 유체를 가정한다면 밀도 \(\rho\) 는 상수이므로 연속 방정식은 다음과 같이 된다. \[ \nabla \cdot \mathbf{V} = 0 \tag{1} \] 식 (1)을 이용하면 Navier-Stokes 방정식에서 \(x\) 축 성분은 다음과 같이 간략화된다. \[ \begin{align} \rho \left( \frac{\partial u}{\parti.. 2021. 8. 10.
Navier-Stokes 방정식 - 1 Navier-Stokes 방정식은 뉴톤 제2법칙으로부터 유도될 수 있다. 공기를 비롯한 유체는 고체와 달리 정해진 모양이 없기 때문에 뉴톤 제2법칙을 적용하기 위해서는 특별한 아이디어가 필요하다. 공기와 같은 속도로 움직이는 미소 유체요소(infinitesimal fluid element)를 생각해보자. 이 유체요소는 일정한 질량을 가지고 있으며, 질량을 유지하기 위해서 부피는 변할 수 있다고 가정한다. 이 유체요소를 질점으로 보면 뉴톤 제2법칙을 적용할 수 있다. 이 유체요소에 작용하는 힘은 체적력(body force), 압력, 그리고 점성력(viscous force)이 있다. 먼저 체적력에는 대표적으로 중력이 있으며 이밖에 관성력과 전자기력 등이 있다. 체적력 \(d\mathbf{F}_b\) 를 단위.. 2021. 8. 10.
연속 방정식 (continuity equation) 공력(aerodynamic forces)의 측정과 예측을 위해서는 유동장(flow field)에 대한 지식이 필요하다. 유동장은 압력, 밀도, 온도, 속도 등4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 이와 관련된 지배 방정식은 연속 방정식, Navier-Stokes 방정식, 에너지 방정식이며 각각은 질량 보존 법칙, 뉴톤 제2법칙, 그리고 에너지 보존 법칙으로부터 유도할 수 있다. 먼저 연속 방정식(continuity equation)을 유도해보자. 공간상에 고정된 위치에 있는 미소(infinitesimal) 체적이 있다고 가정한다. 질량 보존의 법칙에 의하면 이 미소체적에서 빠져나가는 유량과 들어오는 유량의 차이는 미소체적 내부의 공기 질량의 감소량과 같아야 한다. 위 그림에서 .. 2021. 8. 9.