본문 바로가기

항공우주/동역학23

오일러의 회전 정리 (Euler’s Rotation Theorem) 오일러각 좌표변환 방법에서 알아본 회전축은 좌표계의 \(x\) 축, \(y\) 축, \(z\) 축이었다. 하지만 좌표계를 구성하는 좌표축만이 아니라 임의의 축, 즉 임의의 방향을 중심으로 좌표계를 회전시킬 수도 있다. 단위벡터는 크기가 \(1\) 인 벡터이기 때문에 방향을 표시하는데 자주 쓰인다. 여기서도 회전축 방향을 정하는데 단위벡터를 이용하기로 하고 기호로 \(\hat{p}\) 으로 표시하기로 한다. 좌표계 \(\{a\}\) 를 회전축 \(\hat{p}\) 축을 중심으로 \(\beta\) 만큼 회전시키면 새로운 좌표계로 변환되는데 이 좌표계를 \(\{b\}\) 라고 하자. 그러면 그림에서 보듯이 좌표계 \(\{a\}\) 의 좌표축과 회전축 사이의 각도는 좌표계 \(\{b\}\) 의 좌표축과 회전축 .. 2022. 3. 22.
라그랑지 방정식을 이용한 강체 운동방정식 유도 강체(rigid body)의 다양한 지점에 가해지는 모든 외력(external force)은 질량중심(center of mass)에 가해지는 총 외력으로 합산할 수 있고 질량중심은 마치 강체의 모든 질량이 그 중심에 집중되어 있는 질점(point mass)처럼 운동한다. 또한 외력은 강체의 다양한 지점에서 작용하기 때문에 질량중심에 대해서 모멘트를 만들고 이 모멘트는 질량중심에 대한 회전운동을 생성한다. 이와 같이 강체의 운동은 질량중심의 병진운동과 질량중심에 대한 회전운동으로 분리할 수 있다. 이제 강체 운동방정식을 라그랑지 방정식(Lagrange's Equation)을 이용하여 유도해 보도록 하겠다. 강체의 운동에너지도 질량중심의 병진 운동에너지와 질량중심에 대한 회전 운동에너지의 합으로 표현할 수 .. 2022. 2. 14.
강체의 운동방정식 - 4 지금까지 질량중심을 기준으로 강체(rigid body)의 운동방정식을 유도하였다. 이번에는 강체에 고정되어 있는 임의의 점 \(A\) 에 대해서 강체의 운동방정식을 유도해 보도록 하겠다. 임의의 점 \(A\) 에 대한 파티클 시스템(systems of particles)의 운동방정식은 다음과 같았다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j = m \frac{^i d^2 \vec{r}_G}{dt^2} = m \frac{^i d \vec{v}_G }{dt} \tag{1} \\ \\ & \frac{^i d \vec{H}_A}{dt} = m \frac{^i d \vec{r}_{G/A}}{dt} \times \vec{v}_G + \sum_{j=1}^n \vec{M}_{jA} \.. 2022. 2. 7.
강체의 운동방정식 - 3 지금까지 파티클 시스템(systems of particles)에 대해서 다음과 같은 운동방정식을 얻었다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j =m \frac{^id^2 \vec{r}_G }{dt^2}= m \frac{^id \vec{v}_G }{dt} \tag{1} \\ \\ & \sum_{j=1}^n \vec{M}_{jG} = \frac{^id \vec{H}_G }{dt} \tag{2} \\ \\ & \vec{H}_G= \sum_{j=1}^n \vec{r}_{j/G} \times m_j \frac{^id \vec{r}_j}{dt} \\ \\ & T= \frac{1}{2} m \vec{v}_G \cdot \vec{v}_G + \frac{1}{2} \sum_{j=1}.. 2022. 2. 6.
강체의 운동방정식 - 2 관성좌표계의 원점 \(O\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_O\) 를 다음과 같이 정의한 바 있다. \[ \vec{H}_O= \sum_{j=1}^n \vec{r}_j \times m_j \vec{v}_j \tag{1} \] 여기서 \(\vec{v}_j\) 는 파티클 \(j\) 의 속도로서 \(\vec{v}_j= \frac{^i d\vec{r}_j}{dt}\) 이다. 임의의 점 \(A\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_A\) 는 다음과 같이 정의한다. \[ \vec{H}_A = \sum_{j=1}^n \vec{r}_{j/A} \times m_j \vec{v}_j \tag{2} \] 여기서 \(\vec{r}_{j/A}\) 는 점 \(A\) 에서 파티클 \(j.. 2022. 2. 5.
강체의 운동방정식 - 1 고체(solid body)는 많은 수의 파티클 (또는 질점)로 구성되어 있는 파티클 시스템(systems of particles)이라고 볼 수 있다. 그 중에서 파티클 사이의 거리가 변하지 않는 시스템을 강체(rigid body)라고 한다. 파티클 사이의 거리가 시간에 따라서 변하는 시스템은 비강체 또는 유연체(탄성체 또는 비탄성체)라고 한다. 파티클 시스템에 적용되는 기본 원리도 강체에 적용되므로 강체의 운동 방정식을 유도하기 위해서 우선 파티클 시스템의 운동 방정식을 유도해 보기로 한다. 다음과 같이 \(n\) 개의 파티클로 구성된 시스템에서 파티클 \(j\) 에 작용하는 힘에는 외력(external force) \(\vec{F}_j\) 와 내력(internal force) \(\vec{f}_{jk}.. 2022. 2. 3.
해밀톤 방정식 (Hamilton’s Equation) 라그랑지 방정식(Lagrange's equation)은 \(n\) 개의 2차 미분 방정식으로 구성되어 있다. 이 방정식을 \(2n\) 개의 1차 미분 방정식으로 재 구성한 것이 해밀톤 방정식(Hamilton's equation)이다. 먼저 일반화된 운동량(generalized momentum)을 다음과 같이 정의한다. \[ p_i= \frac{\partial L}{\partial \dot{q_i}}, \ \ \ \ \ i=1, 2, ... , n \tag{1} \] 이어서 해밀토니안 함수(Hamiltonian function)를 다음과 같이 정의하고, \[ H= \sum_{i=1}^n p_i \dot{q}_i-L(\mathbf{q}, \dot{\mathbf{q}}, t) \tag{2} \] 일반화된 속도.. 2021. 8. 8.
라그랑지 방정식 (Lagrange’s Equation) 라그랑지 방정식(Lagrange's equation)과 해밀톤 방정식(Hamilton's equation)은 해석 동역학(analytical dynamics)의 근간을 이룬다. 라그랑지 방정식은 해밀톤의 원리(Hamilton's principle)를 일반화 좌표로 표현한 2차 미분 방정식이며, 해밀톤 방정식은 라그랑지 방정식으로부터 유도할 수 있는 1차 미분 방정식이다. \(N\) 개의 질점으로 이루어진 홀로노믹(holonomic) 시스템이 있다고 하자. 그러면 \(N\) 개의 질점의 위치벡터를 일반화 좌표 \(q_i\) 를 이용하여 표현하면 다음과 같다. \[ \mathbf{r}_k= \mathbf{r}_k (q_1, q_2, ... , q_n, t), \ \ \ \ \ k=1, 2, ... ,N \t.. 2021. 8. 8.
일반화 좌표 (Generalized Coordinate) \(N\) 개의 질점으로 이루어진 시스템이 있다고 하자. 각 질점의 위치는 \(N\) 개의 위치 벡터 \(\mathbf{r}_k=\mathbf{r}_k (x_k, y_k, z_k ), \ \ k=1,...,N\) 으로 표현할 수 있다. 여기서 \(x_k, y_k, z_k\) 는 \(k\) 번째 질점의 위치를 직교 좌표계(Cartesian coordinate)로 표시한 좌표다. 질점이 운동할 경우 질점의 각 위치를 시간의 함수 \(x_k (t), y_k (t), z_k (t)\) 로 표현하면 된다. 그러면 3차원 공간상에 \(N\) 개의 운동 궤적이 나타날 것이다. 그런데 만약 \(3N\) 차원 공간이 있다면 \(N\) 개의 질점으로 이루어진 시스템의 운동을 한 점의 운동으로 표현할 수 있지 않을까. 이와.. 2021. 8. 8.
해밀톤의 원리 (Hamilton’s Principle) \(N\) 개의 질점으로 이루어진 시스템이 있다고 하자. 각 질점에 작용하는 합력을 \(\mathbf{R}_k\) 이라고 할 때 시스템이 정적 평형 상태에 있다면 \(\mathbf{R}_k=0\) 이다. 그러면 합력이 질점에 하는 가상일(virtual work)은 \(\mathbf{R}_k \cdot \delta \mathbf{r}_k = 0 \) 이다. 전체 시스템에 대한 가상일은 각 질점의 가상일을 모두 합하면 된다. 전체 가상일도 \(0\) 이다. \[ \delta W= \sum_{k=1}^N \mathbf{R}_k \cdot \delta \mathbf{r}_k = 0 \tag{1} \] 이제 합력을 외력 \(\mathbf{F}_k\) 와 구속력 \(\mathbf{F}_k^\prime\) 의 합으로.. 2021. 8. 4.