[CNN] 2D 컨볼루션 계산하기
1D 컨볼루션과 똑같은 방법으로 '뒤집기와 이동' 방법을 사용하여 2D 컨볼루션을 계산해보자. 2020/07/25 - [CNN의 수학] - 컨볼루션 쉽게 계산하기 공식을 살펴보면, \[ y[m,n] = \sum_{k=-\infty}^\infty \sum_{l=-\infty}^\infty x[k,l] h[m-k, n-l] \] 우선 \( x[m,n] \)과 \( h[m,n] \)을 \( x[k,l] \)과 \( h[k,l] \)로 바꿔야 한다는 것을 알 수 있다. 그리고 \( h[k,l] \)을 수평축과 수직축을 기준으로 두 번 뒤집어서 \( h[-k,-l] \)로 만든 후, \( m,n \)만큼 수평과 수직으로 이동시켜서 \( h[m-k,n-l] \)을 만들고, \( k,l \)에 대해서 \( x[k..
2020. 7. 29.