본문 바로가기

전체 글24

이미지 필터 설계해 보기 필터를 설계한다는 것은 곧 LSI 시스템의 임펄스 반응 \( h[m,n] \)을 결정하는 것과 같다. 그러면 입력 이미지가 \( x[m,n] \)일 때, 필터링된 출력 이미지 \( y[m,n] \)은 시스템의 임펄스 반응과 입력 이미지의 2D 컨볼루션으로 주어진다. \[ \begin{align} y[m,n] &= h[m,n]*x[m,n] \\ \\ &= \sum_{k =-\infty}^{\infty} \sum_{l =-\infty}^{\infty} x[k,l] h[m-k,n-l] \end{align} \] 간단히 3개의 이미지 필터를 설계해 보자. 먼저 이미지를 흐릿하게 만드는 스무딩(smoothing) 필터다. 스무딩 필터의 임펄스 반응은 다음과 같이 정할 수 있다. 임펄스 반응을 보면 스무딩 필터는 .. 2020. 7. 29.
2D 컨볼루션 계산하기 1D 컨볼루션과 똑같은 방법으로 '뒤집기와 이동' 방법을 사용하여 2D 컨볼루션을 계산해보자. 2020/07/25 - [CNN의 수학] - 컨볼루션 쉽게 계산하기 공식을 살펴보면, \[ y[m,n] = \sum_{k=-\infty}^\infty \sum_{l=-\infty}^\infty x[k,l] h[m-k, n-l] \] 우선 \( x[m,n] \)과 \( h[m,n] \)을 \( x[k,l] \)과 \( h[k,l] \)로 바꿔야 한다는 것을 알 수 있다. 그리고 \( h[k,l] \)을 수평축과 수직축을 기준으로 두 번 뒤집어서 \( h[-k,-l] \)로 만든 후, \( m,n \)만큼 수평과 수직으로 이동시켜서 \( h[m-k,n-l] \)을 만들고, \( k,l \)에 대해서 \( x[k,l.. 2020. 7. 29.
2D 컨볼루션 독립변수가 1개인 함수로 표현되는 신호 \( x[n] \)을 1차원 신호(one-dimensional signal)라고 한다. 여기서 \( n \)은 인덱스로서 정수 값을 갖는다. 이 인덱스는 보통 시간스텝(time step)을 나타낸다. 1차원 신호와 관련된 컨볼루션을 1D 컨볼루션이라고 하거나 그냥 컨볼루션이라고 한다. 독립변수가 2개인 함수로 표현되는 신호 \( x[m,n] \)을 2차원 신호라고 한다. 2차원 신호에서 인덱스는 주로 공간상의 위치를 나타내는 배열 또는 순서를 뜻한다. 2차원 신호는 행렬로 나타내며 \( m \)은 행, \( n \)은 열을 나타낸다. 대표적인 2차원 신호로는 이미지(image) 신호가 있다. 2차원 신호와 관련된 컨볼루션을 2D 컨볼루션이라고 한다. 지금부터 LTI.. 2020. 7. 28.
이동평균(moving average) 필터 설계해 보기 필터를 설계한다는 것은 곧 LTI 시스템의 임펄스 반응 \( h[n] \)을 결정하는 것과 같다. 주식 차트를 보면 5일 이동평균선, 10일 이동평균선이라는 것이 있다. 5일 이동 평균은 현재부터 과거 5일전까지의 주가 평균을 계산한 것이다. 10일 이동 평균선도 마찬가지로 현재부터 과거 10일전까지의 주가를 평균 낸 것이다. 그러면 주식 차트의 이동평균선과 비슷하게, 입력 신호에 대한 5 포인트(point) 이동평균 필터와 10 포인트 이동평균 필터를 설계해 보자. 입력 신호를 \( x[n] \)으로 하고, 이동 평균 출력 신호를 \( y[n] \)으로 하면 5 포인트 이동평균 필터의 임펄스 반응은 다음과 같이 설계할 수 있다. \[ \begin{align} h[n] &= \frac{1}{5} ( \d.. 2020. 7. 26.
컨볼루션 쉽게 계산하기 일반적으로 많이 쓰이는 ‘뒤집기와 이동’ 방법을 사용하여 컨볼루션을 계산해 보자. 공식을 잘 살펴보면, \[ y[n] = \sum_{k=-\infty}^\infty h[n-k] x[k] \] 우선 \( x[n] \)과 \( h[n] \)을 \(x[k] \)와 \( h[k] \)로 바꿔야 한다는 것을 알 수 있다. 그리고, \( h[k] \)를 뒤집어서 \( h[-k] \)로 만든 후, \( n \)만큼 이동시켜서 \( h[n-k] \)를 만든 후, \( k \)에 대해서 \( x[k] \)와 \( h[n-k] \)를 곱한 다음, \( k \)에 대해서 \( h[n-k]x[k] \)를 모두 더하면 \( y[n] \)을 계산할 수 있다는 것을 알 수 있다. 그리고, 모든 \( n \)에 대해서 위 과정을 반.. 2020. 7. 25.