본문 바로가기

항공우주104

[CR3BP] 주기궤도 (Periodic Orbit)의 조건 라그랑지 포인트 L1, L2 및 L3에서 선형화 운동방정식의 해석 결과, 초기값을 잘 설정한다면 주기궤도(periodic orbit)가 형성될 수 있다는 것을 알았다 (https://pasus.tistory.com/273). 하지만 선형화 운동방정식은 라그랑지 포인트에서 가까운 영역에서만 유효하기 때문에 보다 넓은 범위에서도 주기궤도를 만들 수 있는지는 더 분석해 봐야 한다. 다시 CR3BP의 무차원화된 비선형 운동방정식으로 돌아가 보자. (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y}-x= - \frac{(1-\mu)(x+\mu)}{r_1^3 }- \frac{\mu (x+\mu-1)}{r_2^3} \tag{1} \\ \\ &.. 2023. 7. 4.
미분보정 (Differential Correction) 미분보정(differential correction)은 슈팅방법(shooting method)으로도 불린다. 기본적으로 미분방정식의 경계값 문제(boundary value problem)를 초기값 문제(initial value problem)로 바꾸어 해를 구하는 방법이다. 다음과 같은 비선형 미분방정식이 있다. \[ \dot{\mathbf{x}}(t)= \mathbf{f}(\mathbf{x}(t)) \tag{1} \] 여기서 초기값 \(\mathbf{x}(t_0 )\) 은 일부만 주어지거나 또는 주어지지 않았다고 가정한다. 대신 정해진 시간 \(t_f\) 에서 경계값 \(\mathbf{x}_d\) 가 주어졌다고 가정한다. 문제는 시간 \(t_f\) 에서 \(\mathbf{x}(t_f )=\mathbf{.. 2023. 7. 3.
[CR3BP] 리야프노프 궤도, 헤일로 궤도, 그리고 리사주 궤도 라그랑지 포인트 L1, L2 및 L3에서의 선형화 운동방정식은 다음과 같았다 (https://pasus.tistory.com/272). \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y}-(1+2c_2 ) \delta x=0 \tag{1} \\ \\ & \delta \ddot{y}+2 \delta \dot{x}+(-1+c_2 ) \delta y=0 \\ \\ & \delta \ddot{z}+c_2 \delta z=0 \end{align} \] 여기서 \[ c_2= \frac{(1-\mu)}{|x_0+\mu|^3 }+ \frac{\mu}{ |x_0+\mu-1|^3 } \tag{2} \] 이다. 식 (1)에서 \(\delta x, \ \delta y\) 운동을 벡터 .. 2023. 6. 27.
[CR3BP] L1, L2 및 L3 포인트에서의 궤도 운동 CR3BP의 선형화된 운동방정식을 이용하여 라그랑지 포인트(Lagrange point) L4 및 L5 포인트는 (중립) 안정 평형점이지만, L1, L2 및 L3 포인트는 불안정한 평형점이라는 것을 확인했다 (https://pasus.tistory.com/271). 하지만 L1, L2 및 L3 포인트의 고유값(eigenvalue) 분석에 의하면 평형점 주위에 주기 궤도(periodic orbit)가 존재함을 시사한다. 즉 특정한 초기조건을 설정하면 불안정한 운동 모드를 배제하고 주기 운동을 하는 모드만을 나타나게 할 수가 있다. 라그랑지 포인트에서의 선형화 운동방정식은 다음과 같다. \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y} = -\bar{U}_{xx} \.. 2023. 6. 25.
[CR3BP] 라그랑지 포인트 안정성 해석 CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y} = -\bar{U}_x \tag{1} \\ \\ & \ddot{y}+2 \dot{x} = -\bar{U}_y \\ \\ & \ddot{z} = -\bar{U}_z \end{align} \] 여기서 \[ \begin{align} & U_{eff}= -\frac{1}{2} (x^2+y^2 ) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{1}{2} \mu (1-\mu) \\ \\ & r_1= \sqrt{(x+\mu)^2+y^2+z^2 } \\ \\ & r_2= \sqrt{(x+\mu-1)^2+y^2.. 2023. 6. 22.
[CR3BP] 힐의 영역 (Hill’s Region) 원궤도 제한 삼체문제(CR3BP)는 질량중심을 중심으로 원궤도 운동을 하는 두 개의 기본 질점에 의해 생성된 중력장에서 제3의 질점의 운동을 기술한다. CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2\dot{y}- x= - \frac{(1-\mu)(x+\mu) }{r_1^3 }- \frac{\mu (x+\mu-1)}{ r_2^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x}-y= - \frac{(1-\mu)y}{r_1^3 }- \frac{\mu y}{ r_2^3 } \\ \\ & \ddot{z}=- \frac{(1-\mu )z}{r_1^3 }- \frac{\mu z}{ r.. 2023. 6. 19.
항공기의 질점 (Point Mass) 운동 모델 전투기 교전 운동 모델, 비행기 성능(performance) 해석 모델, 그리고 단거리 미사일 운동 모델로서 다음과 같이 평평한 지구(flat Earth) 가정 하에서 유도된 질점(point mass) 운동 모델을 많이 사용한다 (https://pasus.tistory.com/181). \[ \begin{align} & \dot{x} =V \cos \psi \cos \gamma \tag{1} \\ \\ & \dot{y}=V \sin \psi \cos \gamma \\ \\ & \dot{h}=V \sin \gamma \\ \\ & \dot{V}= -\frac{D}{m}+ \frac{T \cos \epsilon }{m} -g \sin \gamma \\ \\ & \dot{\psi} = \frac{ (L+T \.. 2023. 3. 12.
상대 궤도요소의 섭동 (Perturbed Relative Orbital Elements) Clohessy-Wiltshire(CW) 방정식을 \[ \begin{align} & \ddot{x}-3n^2 x-2n \dot{y}=f_1 \tag{1} \\ \\ & \ddot{y}+2n \dot{x}=f_2 \\ \\ & \ddot{z}+n^2 z=f_3 \end{align} \] 벡터 행렬식으로 표현하면 다음과 같다. \[ \begin{align} & \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} =\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 3n^2 & 0 .. 2023. 3. 6.
관성 주축 (Principal Axes of Inertia) 강체에 고정된 임의의 점 B를 원점으로 하고 강체에 고정된 좌표계 \(\{a\}\) 에 관한 관성행렬(inertia matrix)은 다음 식으로 계산할 수 있다 (https://pasus.tistory.com/191). \[ [I_B^a ]= \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix} \tag{1} \] 여기서 \(x, y, z\) 는 좌표계 \(\{a\}\) 의 원점에서 강체 내의 임의의 점까지의 위치 좌표이고, 즉 \(\vec{r}=x\hat{a}_1+y\hat{a}_2+z\hat{a}_z\), 행렬 \([I_B^a ]\) 의 구성 성분은 다음과 .. 2023. 2. 19.
좌표변환과 관성행렬 (Inertia Matrix) 관성 다이아딕(inertia dyadic)은 특정 좌표계와 무관하지만 관성 다이아딕을 특정 좌표계로 표현한 관성행렬(inertia matrix)은 좌표계에 따라 달라진다. 어떤 강체의 질량중심 \(G\) 를 원점으로 하고 강체에 고정된 좌표계 \(\{a\}\) 와 좌표계 \(\{b\}\) 가 있다고 하자. 질량중심 \(G\) 에 관한 관성 다이아딕 \(\bar{I}_G\) 를 좌표계 \(\{a\}\) 와 좌표계 \(\{b\}\) 로 각각 표현하면 다음과 같다 (https://pasus.tistory.com/191). \[ \begin{align} \bar{I}_G &= \sum_{i=1}^3 \sum_{j=1}^3 I_{ij}^a \ \hat{a}_i \hat{a}_j \tag{1} \\ \\ &= \s.. 2023. 2. 17.