항공우주/우주역학71 [CR3BP] 리야프노프 궤도, 헤일로 궤도, 그리고 리사주 궤도 라그랑지 포인트 L1, L2 및 L3에서의 선형화 운동방정식은 다음과 같았다 (https://pasus.tistory.com/272). \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y}-(1+2c_2 ) \delta x=0 \tag{1} \\ \\ & \delta \ddot{y}+2 \delta \dot{x}+(-1+c_2 ) \delta y=0 \\ \\ & \delta \ddot{z}+c_2 \delta z=0 \end{align} \] 여기서 \[ c_2= \frac{(1-\mu)}{|x_0+\mu|^3 }+ \frac{\mu}{ |x_0+\mu-1|^3 } \tag{2} \] 이다. 식 (1)에서 \(\delta x, \ \delta y\) 운동을 벡터 .. 2023. 6. 27. [CR3BP] L1, L2 및 L3 포인트에서의 궤도 운동 CR3BP의 선형화된 운동방정식을 이용하여 라그랑지 포인트(Lagrange point) L4 및 L5 포인트는 (중립) 안정 평형점이지만, L1, L2 및 L3 포인트는 불안정한 평형점이라는 것을 확인했다 (https://pasus.tistory.com/271). 하지만 L1, L2 및 L3 포인트의 고유값(eigenvalue) 분석에 의하면 평형점 주위에 주기 궤도(periodic orbit)가 존재함을 시사한다. 즉 특정한 초기조건을 설정하면 불안정한 운동 모드를 배제하고 주기 운동을 하는 모드만을 나타나게 할 수가 있다. 라그랑지 포인트에서의 선형화 운동방정식은 다음과 같다. \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y} = -\bar{U}_{xx} \.. 2023. 6. 25. [CR3BP] 라그랑지 포인트 안정성 해석 CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y} = -\bar{U}_x \tag{1} \\ \\ & \ddot{y}+2 \dot{x} = -\bar{U}_y \\ \\ & \ddot{z} = -\bar{U}_z \end{align} \] 여기서 \[ \begin{align} & U_{eff}= -\frac{1}{2} (x^2+y^2 ) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{1}{2} \mu (1-\mu) \\ \\ & r_1= \sqrt{(x+\mu)^2+y^2+z^2 } \\ \\ & r_2= \sqrt{(x+\mu-1)^2+y^2.. 2023. 6. 22. [CR3BP] 힐의 영역 (Hill’s Region) 원궤도 제한 삼체문제(CR3BP)는 질량중심을 중심으로 원궤도 운동을 하는 두 개의 기본 질점에 의해 생성된 중력장에서 제3의 질점의 운동을 기술한다. CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2\dot{y}- x= - \frac{(1-\mu)(x+\mu) }{r_1^3 }- \frac{\mu (x+\mu-1)}{ r_2^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x}-y= - \frac{(1-\mu)y}{r_1^3 }- \frac{\mu y}{ r_2^3 } \\ \\ & \ddot{z}=- \frac{(1-\mu )z}{r_1^3 }- \frac{\mu z}{ r.. 2023. 6. 19. 상대 궤도요소의 섭동 (Perturbed Relative Orbital Elements) Clohessy-Wiltshire(CW) 방정식을 \[ \begin{align} & \ddot{x}-3n^2 x-2n \dot{y}=f_1 \tag{1} \\ \\ & \ddot{y}+2n \dot{x}=f_2 \\ \\ & \ddot{z}+n^2 z=f_3 \end{align} \] 벡터 행렬식으로 표현하면 다음과 같다. \[ \begin{align} & \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} =\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 3n^2 & 0 .. 2023. 3. 6. 상대 궤도요소 (Relative Orbital Elements) - 2 chief 위성의 궤도가 원궤도 또는 근 원궤도(near-circular orbit)일 경우, 시간 \(t=t_0\) 에서 주어진 상대 궤도요소(ROM, relative orbital elements) \(\delta \kappa\) 를 이용하면 Hill 좌표계에서 상대 위치벡터 \(\delta \vec{r}=x\hat{o}_1+y\hat{o}_2+z\hat{o}_3\) 를 다음 식으로 표현할 수 있다 (https://pasus.tistory.com/240). \[ \begin{align} x & \approx a \delta a-a \lVert \delta \vec{e} \rVert_2 \cos (u-\varphi) \tag{1} \\ \\ y & \approx -\frac{3}{2} ua \delta.. 2023. 2. 7. 상대 궤도요소 (Relative Orbital Elements) - 1 식 (1)로 주어지는 Clohessy-Wiltshire(CW) 방정식 \[ \begin{align} & \ddot{x}-3n^2 x-2n \dot{y}=0 \tag{1} \\ \\ & \ddot{y}+2n\dot{x}=0 \\ \\ & \ddot{z}+n^2 z=0 \end{align} \] 의 해는 다음과 같았다 (https://pasus.tistory.com/239). \[ \begin{align} & x(t)= \frac{\dot{x}_0}{n} \sin nt- \left( 3x_0+\frac{2}{n} \dot{y}_0 \right) \cos nt+ \frac{2}{n} (2nx_0+ \dot{y}_0 ) \tag{2} \\ \\ & y(t)=2 \left( 3x_0+ \frac{2}{n} \do.. 2023. 2. 4. CW 방정식 (Clohessy-Wiltshire Equations) chief 위성에서 deputy 위성의 까지의 거리가 지구중심에서 chief 위성까지의 거리보다 매우 작은 경우 chief 위성에 대한 deputy 위성의 상대 운동을 Hill 좌표계로 표현하면 다음과 같았다. \[ \begin{align} & \ddot{x}- \left( \frac{2\mu}{r^3} + \frac{h^2}{r^4} \right) x+ \frac{2(\vec{r} \cdot \vec{v} ) h}{r^4 } y- 2 \frac{h}{r^2 } \dot{y} = f_1 \tag{1} \\ \\ & \ddot{y}+ \left( \frac{\mu}{r^3} - \frac{h^2}{r^4} \right) y - \frac{2(\vec{r} \cdot \vec{v} ) h}{r^4 } x +.. 2023. 1. 27. 상대 궤도운동 방정식 (Relative Orbit Equation of Motion) 우주공학의 미래라고 불리는 분산 우주시스템(distributed space system)은 단일 위성으로는 불가능한 임무를 수행하기 위해서 두 개 이상의 위성을 집단적으로 사용하는 시스템이다. 분산 우주시스템의 임무 개념의 예로서 궤도상(on-orbit) 서비스, 우주 상황 인식, 분산 군집(swarm) 기반 센싱, 위성 편대비행(formation flying), 랑데부 및 도킹 등을 들 수 있다. 분산 우주 시스템의 장점은 여러 위성 간의 상대 운동을 활용하는 데서 발생한다. 따라서 상대 운동을 표현하기 위한 좌표계와 기준 위성이 필요하다. 보통 분산 우주시스템의 임무가 지구를 중심으로 수행되므로 관성 좌표계로는 지구중심 관성좌표계(ECI, earth-centered inertial frame)를 사용.. 2023. 1. 20. ECEF-LLH 좌표계 상호 변환 매트랩 코드 LLH 좌표계에서 ECEF좌표계로 좌표변환하는 문제를 알고리즘 형태로 정리하면 다음과 같다. 입력: 위도 (\(\lambda_{lat}\)), 경도 (\(\lambda_{lon}\)), 높이 (\(h\)) 1. 접선반경 (\(R_{tr}\)) 계산: \(R_{tr}=\frac{ R_{eq}}{ \sqrt{1-e_{er}^2 \sin^2 \lambda_{lat}}}\) 2. 벡터 \(r^e\) 계산: \(r^e= \begin{bmatrix} (R_{tr}+h) \cos \lambda_{lat} \cos \lambda_{lon} \\ (R_{tr}+h) \cos \lambda_{lat} \sin \lambda_{lon} \\ \left( R_{tr} (1-e_{er}^2 )+h \right) \sin \la.. 2022. 1. 1. 이전 1 2 3 4 5 6 7 8 다음