유도항법제어101 리야프노프 안정성 (Lyapunov stability) 개념 수학에서 자율 미분방정식(autonomous differential equation) 또는 자율 시스템은 명시적으로 독립변수의 함수가 아닌 미분방정식 또는 시스템을 말한다. 독립변수가 시간이라면 시불변(time-invariant) 시스템이라고도 한다. 독립변수가 시간인 비선형 비자율 미분방정식은 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)\) 로, 자율 시스템 또는 시불변 시스템은 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) 로 표기한다. 어떤 시불변 시스템 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) 의 한 평형상태(equilibrium state)를 \(\mathbf{x}_e\) 라고 하자. 평형상.. 2022. 9. 27. [Continuous-Time] LTI 시스템과 인과 시스템 LTI시스템의 출력은 다음과 같이 입력과 임펄스 반응의 컨볼루션으로 주어진다. \[ y(t)= \int_{-\infty}^{\infty} u(\tau) h(t-\tau) \ d\tau \] 여기서 \(h(t-\tau)\) 는 시간 \(\tau\) 에서 시스템에 임펄스를 입력으로 가했을 때 시간 \(t\) 에서의 출력이다. 그런데 여기서 \( t \lt \tau\) 일 때 \(h(t-\tau)\) 의 값이 \(0\) 이 아니라면 조금 이상한 일이 벌어진다. 임펄스를 입력으로 가하기 이전에 그 결과인 임펄스 반응이 시간적으로 먼저 나오는 것으로 해석되기 때문이다. 이것은 인과 법칙에 위배된다. 원인이 앞서고 결과가 뒤따르는게 순리적으로 맞기 때문이다. 원인이 결과에 앞서는 시스템을 인과(causal) 시스템.. 2022. 9. 13. [Continuous-Time] LTI 시스템과 컨볼루션 입력과 출력의 관계식으로 표현하는 방법을 시스템의 외부적 표현 방법이라고도 하는데 다음과 같이 연산자(operator)를 이용하여 입출력 관계식을 함수로 나타낸다. \[ \mathbf{y}(t)= \mathcal{F} \{ \mathbf{u}(t), t\} \] 여기서 \(t\) 는 시간, \(\mathbf{u}(t)\) 는 입력, \(\mathbf{y}(t)\) 는 출력이다. 시불변 시스템의 경우 입력을 가한 싯점에 관계없이 출력이 동일해야 하므로 입출력 관계식은 다음과 같이 된다. \[ \mathbf{y}(t)= \mathcal{F} \{ \mathbf{u}(t) \} \] 한편 시불변이면서 동시에 선형인 경우에는 중첩의 원리가 적용되므로 시스템은 다음과 같은 특성을 가져야 한다. \[ \begin{.. 2022. 9. 13. [Continuous-Time] LTI 시스템 선형 시스템에 이어서 이번에는 시불변(time-invariant) 시스템이 무엇인지 알아보자. 시불변 시스템은 초기값 \(\mathbf{x}(0 )\) 을 시간 \(\tau\) 만큼 늦추고 입력 \(\mathbf{u}(t)\) 도 \(\tau\) 만큼 늦춰서 똑같은 형태로 시스템에 인가했을 때, 출력 \( \mathbf{y}(t)\) 도 \(\tau\) 만큼 늦춰진 채 똑같은 형태로 나오는 시스템이다. 즉 시스템의 초기값과 입력의 시점 따라 시스템의 출력이 바뀌지 않는 시스템을 말한다. 예를 들어서 '어제' A라는 초기값과 패턴을 갖는 신호를 시스템에 입력으로 주었더니 B라는 출력 신호가 나왔다고 했을 때, '오늘' 동일한 A라는 초기값과 입력 신호를 시스템에 가했더니 어제와 동일한 B라는 출력 신호가 .. 2022. 9. 13. [PSOC-7] 유사 스펙트럴 방법 예제 유사 스펙트럴(pseudospectral) 방법은 다음과 같이 경계조건을 갖는 미분방정식이 있을 때, \[ \begin{align} & \mathcal{D} \mathbf{x}(t)=\mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 방정식의 미지해 \(\mathbf{x}(t)\) 를 다음과 같은 형식을 갖는 \(\mathbf{X}(t)\) 로 근사적으로 구하는 방법이다. \[ \mathbf{x}(t) \approx \mathbf{X}(t)= \sum_{i=1}^N \mathbf{d}_i .. 2022. 4. 24. [PSOC-6] 유사 스펙트럴 방법 (Pseudospectral Method) 다음과 같이 경계조건을 갖는 미분방정식이 있다고 하자. \[ \begin{align} & \mathcal{D} \mathbf{x}(t)= \mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 여기서 \(\mathcal{D}\) 는 미분, \(\mathcal{B}\) 는 경계조건을 뜻하는 연산자이다. 위 미분방정식의 미지해 \(\mathbf{x}(t)\) 를 근사적으로 구한 해(approximate solution) \(\mathbf{X}(t)\) 를 다음과 같은 형식으로 구하고자 한다. \[.. 2022. 4. 23. [PSOC-5] 가우시안 쿼드래처 (Gaussian Quadrature) 가우시안 쿼드래처(Gaussian quadrature)는 구간 \([-1, 1]\) 에서 어떤 함수 \(f(\tau)\) 의 적분값을 적분 구간내의 특정 지점에서의 함수값의 가중치 합으로 계산하는 수치적분 방법이다. \[ \int_{-1}^1 f(\tau) \ d \tau \approx \sum_{i=1}^N w_i f(\tau_i) \tag{1} \] 여기서 적분 구간내의 특정 지점인 \(\tau =\tau_1, \tau_2, ..., \tau_N\) 을 쿼드래처 포인트라고 하고, \(w_i\) 를 쿼드래처 포인트의 가중치(weighting)이라고 한다. 가우시안 쿼드래처의 정확도는 쿼드래처 포인트의 갯수와 점 사이의 간격에 달려있다. 함수 \(f(\tau)\) 를 \((N-1)\) 차 라그랑지 보간 .. 2021. 12. 18. [PSOC-4] 라그랑지 보간 다항식 \(N\) 개의 임의의 점 \(t_i\) 에서 함수 \(f(t)\) 의 값 \(f(t_i)\) 가 주어졌을 때, \(N\) 개의 점 \(f(t_i)\) 를 지나는 \((N-1)\) 차 라그랑지 보간 다항식(Lagrange interpolation polynomials) \(p(t)\) 는 다음과 같이 주어진다. \[ f(t) \approx p(t) = \sum_{i=1}^N f(t_i ) L_i (t) \tag{1} \] 여기서 \(t_i\) 를 보간점(interpolating point)라고 한다. 또한 \(L_i (t)\) 를 \((N-1)\) 차 라그랑지 기저 다항식(Lagrange basis polynomials) 또는 라그랑지 다항식이라고 하며 다음과 같이 정의한다. \[ L_i (t)= \pr.. 2021. 12. 17. [PSOC-3] 가우스 포인트 (Gauss Points) 가우스 포인트(Gauss points)는 \([-1, 1]\) 의 구간에서 정의되는 점들의 집합으로서 점(point)간의 간격이 서로 다르다는 특징이 있다. 가우스 포인트는 라그랑지 보간 다항식(Lagrange interpolation polynomials)의 보간점(interpolating point), 가우스 쿼드래처(Gauss quadrature)의 쿼드래처 포인트(quadrature point), 그리고 유사 스펙트럴 방법(pseudospectral method)의 콜로케이션 포인트(collocation point)로 사용된다. 가우스 포인트는 다음 3가지가 있으며, 각각 다음과 같이 정의된다. (a) LGL (Legendre-Gauss-Lobatto) 포인트: LGL 포인트는 \((N-1)\) .. 2021. 12. 16. [PSOC-2] 르장드르 다항식 (Legendre Polynomials) 르장드르 다항식(Legendre polynomials)은 다음 르장드르 미분방정식을 만족하는 다항식 \(P_N (\tau)\) 이다. \[ (1-\tau^2 ) \ddot{P}_N (\tau)-2 \tau \dot{P}_N (\tau)+N(N+1) P_N (\tau)=0, \ \ \ \ N=0, 1, 2, ... \tag{1} \] 여기서 독립변수 \(\tau\) 는 \([-1, 1]\) 의 범위를 갖는다. \(P_N (\tau)\) 을 \(N\) 차 르장드르 다항식이라고 한다. \(N=0\) 일 때의 미분 방정식의 해, 즉 \(0\) 차 르장드르 다항식은 \(P_0 (\tau)=1\) 이고, \(N=1\) 일 때의 해는 \(P_1 (\tau)=\tau\) 이다. \(N \ge 2\) 일 때는 다음과 같.. 2021. 12. 15. 이전 1 ··· 4 5 6 7 8 9 10 11 다음