본문 바로가기

유도항법제어23

진동 모드 해석 복소수는 실수부와 허수부를 갖는 수체계다. 실수부를 \(x\)축에, 허수부를 \(y\)축에 표시하면 복소수를 복소 평면상에 표시할 수 있다. 복소수는 보통 실수부와 허수부로 표현하지만 다음과 같이 크기와 위상각으로도 표현할 수 있다. \[ \begin{align} z &=x+jy \\ \\ &= r \cos \theta +j r \sin \theta \end{align} \] 여기서 \(r\)은 복소수의 크기, \(\theta\)는 위상각이며 각각 다음과 같이 계산할 수 있다. \[ r= \sqrt{x^2+y^2 }, \ \ \ \theta =\tan^{-1} \left( \frac{y}{x} \right) \] 오일러 공식(Euler formula)에 의하면 다음 식이 성립하므로, \[ e^{j \th.. 2021. 1. 26.
운동 모드 해석 고유값(eigen value)과 고유벡터(eigen vector)의 개념은 여러 분야에서 사용되고 있다. 운동 모드를 해석할 때도 사용되는데 이에 대해서 알아보자. 다음과 같이 상태변수의 미분 방정식으로 표현되는 운동 방정식이 있다고 하자. \[ \dot{\mathbf{x}}= A \mathbf{x} \tag{1} \] 여기서 \(\mathbf{x}(t)\)는 상태변수로서 성분이 \(n\)개인 벡터다. \(A\)는 성분이 모두 실수 값인 \(n \times n\) 행렬이다. 위 식은 \(n\)개의 스칼라 미분 방정식이 서로 연결된 연립 미분 방정식으로서 외부 입력이 작용하지 않는 다양한 선형 운동 방정식을 표현할 수 있는 범용 식이다. 식 (1)을 상태공간 방정식(state-space equation)이.. 2021. 1. 26.
급속탐색 랜덤트리 (RRT, rapidly-exploring random tree) 경로계획(path planning)은 자율자동차, 로봇, 무인 항공기, 우주탐사 등과 같은 많은 분야에서 필수적인 요구사항이다. 경로계획법에는 여러 가지 방법이 제안되어 있는데, 최근 가장 인기를 모으는 방법으로는 RRT(rapidly exploring random tree)가 있다. RRT는 샘플링 기반 경로계획법의 하나이다. 샘플링 기반 경로계획법은 형상공간을 격자(grid)로 분할하지 않고, 랜덤(random)하게 샘플점을 여러 개 생성하여 점점이(point-wise) 공간을 탐색하여 경로를 찾아내는 방법이다. 즉 형상공간(configuration space) 내에서 샘플점을 무작위로 충분한 수만큼 발생시키고 그 샘플점이, 혹은 두 개의 샘플점을 잇는 선이 장애물과 충돌하는 지 여부를 확인하여 자유.. 2021. 1. 21.
오일러-라그랑지 방정식과 브라키스토크론 문제의 풀이 상단 지점 \((0,0)\)에 정지해 있던 물체가 경로 \(y(x)\)를 따라 마찰없이 중력의 영향으로만 미끄러져서 하단 지점 \((x_f,y_f)\)까지 도착하는데 걸리는 시간은 다음과 같이 계산된다. \[ t= \int_0^{x_f} \frac{ \sqrt{ 1+ \left( \frac{dy}{dx} \right)^2 } }{ \sqrt{2gy} } \ dx \] 여기서 시간 \(t\)를 최소로 만드는 경로 함수 \(y(x)\)를 계산하는 것이 브라키스토크론(Brachistochrone) 문제다. 시간 \(t\)는 함수 \(y(x)\)를 변수로 하는 functional이다. 이 값을 최소화하는 함수 \(y(x)\)를 찾는 문제이므로 변분법의 문제이다. 다음과 같은 functional \(F(y, y^.. 2021. 1. 13.
변분법과 오일러-라그랑지 방정식 오일러-라그랑지 방정식(Euler-Lagrange equation)은 어떤 함수와 그 도함수(derivative)의 함수인 functional의 값을 최대화 또는 최소화하는 함수를 유도하기 위한 미분 방정식이다. 수식으로 살펴보자. 다음과 같은 functional \(F(y, y^\prime)\)가 있다고 하자. \[ F(y, y^\prime)= \int_{x_0}^{x_f} h(y(x), y^\prime (x)) \ dx \] 여기서 \(y(x)\)는 \(x\)의 함수이고, \(y^\prime (x)= \frac{dy}{dx}\)는 \(y(x)\)의 도함수이며, 적분 구간의 양쪽 경계 \(y(x_0)\)와 \(y(x_f)\)는 고정된 값으로 가정한다. Functional \(F(y, y\prime)\).. 2021. 1. 12.
변분법 (calculus of variation) 최적화는 크게 정적 최적화(static optimization)와 동적 최적화(dynamic optimization)로 분류할 수 있다. 정적 최적화는 파라미터 최적화(parameter optimization)라고도 하며, 동적 최적화는 최적제어(optimal control) 문제라고 한다. 파라미터 최적화는 정적(static) 파라미터를 변수로 하는 어떤 함수(function)에서 최소값 또는 최대값을 산출하는 파라미터를 구하는 문제다. 반면에 동적 최적화는 '함수를 변수로 하는 함수' (함수의 함수로서 functional이라고 한다)에서 최소값 또는 최대값을 산출하는 함수를 구하는 문제다. 파라미터 최적화에 미분법이 필요하듯이 동적 최적화에는 변분법(calculus of variation)이 필요하다.. 2021. 1. 11.
[Continuous-Time] 선형 시스템 시스템은 여러가지 기준으로 다양하게 분류될 수 있는데, 우선 시스템을 선형 시스템과 비선형 시스템으로 분류할 수 있다. 선형 시스템(linear system)인지 판별하기 위해서 두 개의 초기값과 입력 및 출력 세트가 있다고 하자. 첫 번째 세트는 임의의 시간 \(t=t_0\)에서 상태변수의 초기값이 \(\mathbf{x}_1 (t_0)\)이고, 시간 영역 \(t \ge t_0\)에서 입력이 \(\mathbf{u}_1 (t)\)일 때 출력이 \(\mathbf{y}_1 (t)\)이고, 두 번째 세트는 상태변수의 초기값이 \(\mathbf{x}_2 (t_0)\)이고 시간 영역 \(t \ge t_0\)에서 입력이 \(\mathbf{u}_2 (t)\)일 때 출력이 \(\mathbf{y}_2 (t)\)이다. 선형.. 2021. 1. 10.
시스템의 수학적 표현 방법 시스템은 어떤 입력에 대해서 반응하여 동작하는 장치나 구성품의 집합을 뜻한다. 시스템의 반응을 출력 또는 응답이라고 한다. 시스템은 꼭 물리적인 장치나 구성품 또는 하드웨어일 필요는 없고, 알고리즘 또는 소프트웨어일 수도 있다. 아니면 사회경제 제도일 수도 있다. 세상에는 무인기 시스템, 제어 시스템, 금융 시스템 등등 많은 시스템이 있다. 제어 대상 시스템을 수학적으로 표현하는 방법에는 두 가지가 있다. 입력과 출력의 관계식으로 표현하는 방법과 상태공간(state-space) 방정식으로 표현하는 방법이다. 입력과 출력의 관계식으로 표현하는 방법을 시스템의 외부적 표현 방법이라고도 하는데 다음과 같이 연산자(operator)를 이용하여 입출력 관계식을 함수로 나타낸다. \[ \mathbf{y}(t)= \.. 2021. 1. 9.
안티 와인드업 (Anti-Windup) 제어 대상 시스템에 대해서 우리가 바라는 동작이 무엇인지 수치로 정해준 것을 명령(command)이라고 하고, 이 값과 실제 시스템의 출력의 차이를 추종 오차(tracking error)라고 한다. 비례-적분(PI, proportional-integral) 제어기는 출력이 정정상태(steady-state)에 돌입했을 때의 추종 오차를 줄이기 위한 제어 기법이다. 아래 그림은 일반적인 제어 시스템의 구조를 보여준다. \(r\)을 명령, \(y\)를 출력, \(e=r-y\)를 추종 오차, \(u\)를 제어 신호라고 한다. PI 제어기는 추종 오차의 크기에 비례하는 값과 오차의 적분 (또는 오차의 누적)에 비례하는 값을 제어 신호로 내보낸다. \[ u(t)=K_p e(t)+K_I \int_0^t e(t) \ .. 2021. 1. 9.
브라키스토크론 문제와 변분법 같은 평면에 높이가 다른 두 지점 \(A\)와 \(B\)가 있다. 지점 \(A\)는 지점 \(B\)보다 높은 곳에 위치해 있다. 이 때 상단 지점 \(A\)에 정지해 있던 물체가 마찰없이 중력의 영향으로만 미끄러져서 가장 짧은 시간에 하단 지점 \(B\)까지 도착할 수 있는 경로는 무엇일까? 지점 \(A\)와 \(B\)를 잇는 경로는 무수히 많다. 언뜻 생각하면 두 지점을 직선으로 연결한 경로(위 그림에서 녹색 경로)가 두 지점 \(A\)와 \(B\)를 연결하는 최단 경로이기 때문에 최단 시간에 이동할 수 있는 경로도 되지 않을까 싶지만, 그렇지 않다. 중력 때문에 생기는 물체의 속도도 고려해야 한다. >수평 방향을 \(x\)축, 수직 방향을 \(y\)축으로 한다면, 경로는 \(x\)를 변수로 하는 함수.. 2021. 1. 8.