본문 바로가기

분류 전체보기325

랜덤변수의 함수와 샘플링 - 3 랜덤변수 \(X\)의 확률밀도함수(pdf, probability density function)가 \(p_X (x)\)이고, 랜덤변수 \(Y\)가 함수 \(Y=g(X)\)로 주어졌을 때, \(Y\)의 확률밀도함수 \(p_Y (y)\)를 구할 수 있었다. 또한 랜덤변수 \(Y\)의 확률분포에서 샘플을 직접 추출하기 어려운 경우에는 가우시안 또는 균등분포(uniform distribution)를 갖는 랜덤변수 \(X\)로부터 샘플 \(X=x^{(i)}\)를 추출하여 함수 관계식 \(y^{(i)}=g(x^{(i)})\)로 변환해서 사용할 수 있었다. 그렇다면, 랜덤변수 \(X\)의 확률밀도함수 \(p_X (x)\)와 랜덤변수 \(Y\)의 확률밀도함수 \(p_Y (y)\)가 주어졌을 때, X와 Y의 함수 관계식.. 2020. 12. 26.
랜덤변수의 함수와 샘플링 - 2 랜덤변수(random variable) \(X\)의 확률밀도함수(pdf, probability density function) \(p_X (x) \)이고, 랜덤변수 \(Y\)가 미분가능한 함수 \(Y=g(X)\)로 주어졌을 때, \(Y\)의 확률밀도함수 \(p_Y (y)\)는 다음과 같이 주어진다. \[ p_Y (y) = \sum_{i=1}^k \frac{p_X (x_i)}{ \left| g^{\prime} (x_i) \right| } \] 여기서 \(x_1,x_2, ... \)는 함수 \(y=g(x)\)의 해이고 \(g^\prime (x_i)\)는 \(x_i\)에서 함수 \(g\)를 미분한 값이다. 증명은 복잡하므로 생략하기로 한다. 위 식을 이용하여 \(g\)가 선형함수 \(Y=aX+b,\ a \gt.. 2020. 12. 24.
랜덤변수의 함수와 샘플링 - 1 \(Y\)가 랜덤변수(random variable) \(X\)의 함수 \(Y=g(X)\)로 주어진다면 \(Y\)도 랜덤변수가 된다. \(X\)의 누적분포함수 \(F_X (x) \)와 확률밀도함수 \(p_X (x) \)로부터 \(F_Y (y) \)와 \(p_Y (y) \)를 구해보자. 사건 \( \{ Y \le y \} \)의 확률은 랜덤변수 \(X\)가 \( g(X) \le y \)를 만족하는 실수 구간 \( \{ X \in I_x \} \)에 속할 확률과 같으므로 \(Y\)의 누적분포함수는 다음 식으로 계산할 수 있다. \[ \begin{align} F_Y (y) & = P \{ Y \le y \} \\ \\ &= P \{ g(X) \le y \} \\ \\ &= P \{ X \le g^{-1} (y).. 2020. 12. 22.
반복적인 기댓값 계산 랜덤변수(random variable) \( X \)와 \( Y \)의 함수인 \( g(X,Y) \)의 기댓값 \( \mathbb{E}[g(X,Y)] \)는 다음과 같이 조건부 기댓값을 두 번 반복하여 계산해서 구할 수 있다. \[ \mathbb{E}[ g(X,Y)]=\mathbb{E}_Y \left[ \ \mathbb{E}_X [ g(X,Y)|Y ] \ \right] \] 여기서 \( \mathbb{E}_X [ \cdot ] \)는 기댓값을 확률밀도함수 \( p_{X|Y} (x|y) \)를 이용하여 계산한 것이고 \( \mathbb{E}_Y [ \cdot ] \)는 기댓값을 \( p_Y (y) \)를 이용하여 계산한 것이다. 위 관계식을 증명해 보자. \[ \begin{align} \mathbb{E}_.. 2020. 12. 12.
베이즈(Bayes) 정리 사건 \(B\)가 발생한다는 가정(또는 조건)하에서 사건 \(A\)가 발생할 확률을 사건 \(A\)의 조건부 확률(conditional probability)이라고 하고, 다음과 같이 정의한다. \[ P\{A|B \}=\frac{P\{A,B \}}{P \{B \}} \] 비슷하게 사건 \(A \)가 발생한다는 가정하에서 사건 \(B\)가 발생할 확률은 다음과 같이 쓸 수 있다. \[ P\{B|A\}= \frac{P\{A,B\} }{ P\{A\} } \] 위 두 식을 이용하면 다음과 같은 연쇄법칙(chain rule)을 만들 수 있다. \[ P\{A,B \} = P\{A│B \}P\{B\}=A\{B│A\}P \{A \} \] 한편 다음 그림과 같이 \( N \)개의 사건 \( \{ B_i, \ i=1,.... 2020. 11. 13.
샘플평균과 샘플분산 디랙 델타(Dirac delta) 함수 \( \delta (x) \)를 이용하면 확률밀도함수 \( p_X (x) \)를 다음과 같이 근사화할 수 있다. \[ p_X (x) \approx \sum_{i=1}^N \omega_i \delta (x-x^{(i) } ) \] 여기서 \( x^{(i)} \)는 확률밀도함수가 \( p_X (x) \)인 모집단에서 추출한 샘플이다. \( N \)개의 샘플이 독립적이고 공평하게 추출됐다면 각 샘플이 추출될 확률 \( \omega_i \)는 다음과 같이 동일하게 주어진다. \[ \omega_i = P \{ X=x^{(i) } \} = \frac{1}{N} \] 그러면 랜덤변수(random variable) \( X \)의 함수인 \( f(X) \)의 기댓값 \( \mat.. 2020. 11. 12.
강화학습 문제 최적제어 문제는 다음과 같이 이산시간(discrete-time) 차분 방정식(difference equation)으로 표현된 비선형 시스템이 있을 때, \[ \mathbf{x}_{t+1} = \mathbf{f}_t ( \mathbf{x}_t, \mathbf{u}_t) \] 시스템이 어떤 스칼라 성능지수(performance index) \( J_i \)를 최소화하도록 제어변수 \( \mathbf{u}_t \in R^m \)를 결정하는 문제다. 성능지수의 일반적인 형태는 다음과 같다. \[ J_i = \phi (T, \mathbf{x}_T )+ \sum_{t=i}^{T-1} g_t ( \mathbf{x}_t, \mathbf{u}_t) \] 여기서 아래 첨자 \(t \)는 시간스텝을 나타내며 \( \math.. 2020. 11. 8.
IID 샘플 IID는 independent and identically distributed의 약자다. '독립적이고 동일하게 분포된'이라는 뜻이다. 샘플(sample)은 샘플링(sampling)을 통해 추출된 데이터를 뜻한다. 따라서 IID샘플은 ‘독립적이고 동일한 확률로 추출된 데이터’를 의미한다. 비슷한 용어로 IID프로세스가 있는데, IID 프로세스란 프로세스를 구성하는 랜덤변수가 서로 독립이고 모두 동일한 확률분포를 갖는 프로세스를 말한다. 데이터의 전반적인 모습을 파악하기 위해서는 데이터의 분포를 묘사하는 것이 필요하다. 데이터의 분포를 수학적으로 묘사하는 함수로, 데이터가 연속적인 값을 가질 경우에는 확률밀도함수(probability density function)가 사용되고 데이터가 불연속적인 값(또는 .. 2020. 11. 4.
[Discrete-Time] 자유최종상태 (Free-final-state) LQR 다음과 같은 선형 시스템에 대해서 \[ \mathbf{x}_{t+1}=F_t \mathbf{x}_t+G_t \mathbf{u}_t \tag{1} \] 목적함수가 다음과 같이 2차함수로 주어지는 \[ J_t = \frac{1}{2} \mathbf{x}_N^T S_N \mathbf{x}_N + \frac{1}{2} \sum_{t=i}^{N-1} \left( \mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R_t \mathbf{u}_t \right) \tag{2} \] LQR 문제의 해는 다음과 같다. 여기서는 최종 상태변수에 관한 제약조건이 없다고 가정한다 (https://pasus.tistory.com/38). \[ \begin{align} & \mathbf{x}_{.. 2020. 10. 31.
[Discrete-Time] LQR 문제 비선형 시스템에 대해서 매우 일반적인 목적함수를 적용한 최적제어 문제에 대한 해를 유도해 보았다 (https://pasus.tistory.com/35). 그러나 이러한 셋팅으로는 명시적인 제어법칙(control law)을 유도해 내기가 어렵다. LQR은 선형 시스템에 대해서 2차 함수로 주어진 목적함수를 이용한 최적제어 문제에서 도출되었으며 명시적인 제어법칙을 가지고 있는 제어기이다. LQR은 linear quadratic regulator의 약자로서 시스템이 선형(linear)이며 목적함수가 2차함수(quadratic)라는 의미이다. regulator는 시스템의 상태를 \(0\) (또는 set point로 불리는 상수 상태변수 값)으로 만드는 제어기를 뜻한다. LQR은 PID 제어기와 함께 실제 응용 .. 2020. 10. 31.