본문 바로가기

이체문제11

기본 궤도 미분 방정식의 무차원화 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^id^2 \vec{r}}{dt^2} + \frac{\mu}{r^3} \vec{r} =0 \tag{1} \] 여기서 \(\mu=GM\) 은 중력 파라미터, \(\vec{r}\) 은 관성 좌표계 \(\{i\}\) 의 원점에서 질점 \(m\) 까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 이 방정식에서 사용하는 거리와 시간의 크기는 \(km\) 나 초 (\(sec\))로 표시하기에는 너무 큰 경우가 많기 때문에 숫자의 크기를 줄이고 수치연산 시간을 줄이기 위해서 천문단위를 도입하여 사용하는 경우가 있다. 천문단위는 무차원화(nondimensionalization)된 시간과 거리 단위를 말한다. 먼저 .. 2021. 12. 30.
궤도 에너지와 속도 운동에너지(kinetic energy)와 위치에너지(potential energy)의 합이 기계적인 에너지 \(\mathcal{E}\) 이며, 이 에너지는 운동 궤도상에서 일정하게 보존된다. \[ \frac{v^2}{2}- \frac{\mu }{r} = \mathcal{E} = \mbox{constant} \tag{1} \] 여기서 \(\frac{v^2}{2} \) 은 단위질량당 운동에너지, \(-\frac{\mu}{r}\) 는 단위질량당 위치에너지이다. 이제 이체문제(two-body problem)에서 질점 \(M\) 을 지구로, 질점 \(m\) 을 우주비행체로 보고 논의를 진행하자. 궤도의 에너지 \(\mathcal{E}\) 는 궤도상에서 모두 동일하므로 근지점(perigee)이나 원지점(apogee.. 2021. 12. 14.
케플러(Kepler) 법칙의 증명 케플러(Kepler)의 세가지 법칙은 이체문제(two-body problem) 가정 하에 뉴턴의 제2법칙과 만유인력의 법칙을 이용하여 증명할 수 있다. 케플러의 법칙은 주로 화성을 관찰하여 얻은 경험적인 법칙이지만 지구를 비롯한 모든 행성뿐만 아니라 우주비행체에도 적용된다. 케플러의 제1법칙은 행성의 궤도는 태양을 초점으로 하는 타원궤도라는 것이다. 이체문제 가정 하에 질점 \(m\) 이 가질 수 있는 궤도의 모양은 타원궤도를 포함하여 4가지라는 것을 이미 증명하였다. 여기서 질점 \(m\) 을 행성, 질점 \(M\) 을 태양으로 보면 된다. 이는 케플러 제1법칙의 확장을 의미한다. 케플러의 제2법칙은 질점 \(M\) 과 질점 \(m\) (태양과 행성의 중심)을 연결한 선은 동일한 시간동안 동일한 면적을.. 2021. 12. 13.
이체문제에서 궤도의 모양 이체문제(two-body problem) 가정하에서 다음 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{ ^i d^2 \vec{r} }{ dt^2} + \frac{\mu}{r^3} \vec{r} =0 \tag{1} \] 여기서 \(\mu=GM\) 은 중력 파라미터, \(\vec{r}\) 은 관성 좌표계 \(\{i\}\) 의 원점에서 질점 \(m \ll M\) 까지의 위치벡터, \(r\) 은 위치 벡터의 크기, 즉 거리다. 그리고 기본 방정식으로부터 다음과 같이 궤적 방정식(trajectory equation)을 유도하였다. \[ r= \frac{p}{1+e \cos \theta } \tag{2} \] 여기서 \(p\) 는 통반경 (semi-latus rectum), \(e\) 는 이심율 (e.. 2021. 12. 13.
삼체문제 (Three-Body Problem) 이체문제(two-body problem)에서는 전 우주에 질점(point mass)이 딱 2개 밖에 없으며 두 질점 사이에는 만유인력만 작용한다는 가정하에서 두 질점의 운동에 관한 문제를 다루었다. 이체문제는 해석적인 해가 존재했으며 두 질점의 절대적인 또는 상대적인 궤도의 모양은 원, 타원, 포물선, 쌍곡선 중의 하나였다. 삼체문제(three-body problem)는 이체문제에 질점 하나를 추가한 것이다. 전 우주에 질점이 3개밖에 없으며 세 질점 사이에 만유인력만 작용한다는 가정하에서 세 질점의 운동을 다루는 문제다. 삼체문제는 질점 하나를 더 추가했을 뿐이지만 이체문제와는 확연히 다른 매우 복잡한 운동의 모습을 보여준다. 우선 삼체문제는 해석적인 해가 없다. 수치적으로 운동 방정식을 풀어야 한다... 2021. 4. 7.
기본 궤도 미분 방정식 - 궤적 방정식 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2 \vec{r}}{ dt^2} + \frac{\mu}{r^3} \vec{r} =0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 알 수 있는 것에는 또 무엇이 있을까. 궤도의 모양을 알 수 있다. 궤도 미분 방정식에 의하면 궤도의 모양은 4가지밖에 없다. 원궤도, 타원궤도, 포물선궤도, 쌍곡선궤도가 그것이다. 어떻게 궤도의 모양을 알 수 있는지 살펴보도록 하자. 사실 궤도 미분 방정식을 풀면 질점 \(m\)의 운동 궤도 모양을 알 수 있다. 위 식은.. 2021. 3. 1.
기본 궤도 미분 방정식 - 궤도 에너지 보존 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2 \vec{r}}{ dt^2} + \frac{\mu}{r^3} \vec{r} =0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 어떤 것을 알 수 있을까. 만유인력은 보존력(conservative force)이므로 만유인력 이외의 다른 힘이 존재하지 않는다는 가정 하에서 질점 \(m\)의 기계적인 에너지(mechanical energy)는 보존될 것으로 예상할 수 있다. 궤도 미분 방정식을 이용하여 질점 \(m\)의 운동 궤도상에서 실제로 기계적인 .. 2021. 2. 25.
기본 궤도 미분 방정식 - 각운동량 보존과 궤도면 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^i d^2\vec{r}}{dt^2} + \frac{\mu}{r^3} \vec{r} = 0 \] 여기서 \(\mu=GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식으로 어떤 것을 알 수 있을까. 먼저 3차원 공간상에 있는 질점 \(m\)은 특정 평면내에서만 운동한다는 것을 알 수 있다. 이 평면을 궤도면(orbital plane)이라고 한다. 질점 \(M\)을 태양, 질점 \(m\)을 지구로 본다면 지구의 공전면을 황도면이라고 하는데, 지구는 태양 주위를 돌지만 황도면을 벗어나지는 못한다... 2021. 2. 24.
더 단순화된 이체문제 이체문제의 운동 방정식을 다음과 같이 유도한 바 있다. \[ \frac{ ^id^2 \vec{r} }{dt^2 } + \frac{\mu}{r^3} \vec{r} = 0 \tag{1} \] 여기서 \(\mu=G(M+m)\)이다. 이 식은 질점 \(M\)에 대한 질점 \(m\)의 상대적인 운동을 표현한 식이다. 두 질점의 질량 중심점은 벡터 \(\vec{r}_c\)가 가리키는 점으로 다음 식으로 주어진다. \[ \vec{r}_c = \frac{ M\vec{r}_M +m\vec{r}_m }{ M+m } \tag{2} \] 이제 이체문제를 더 단순화시키고자 한다. 식 (1)에서 한 질점의 질량이 다른 질점의 질량보다도 압도적으로 크다고 가정한다. \[ M≫m \tag{3} \] 그러면 \(M+m \approx .. 2021. 1. 12.
기본 궤도 미분 방정식 전 우주에 물체가 딱 2개 밖에 없다고 가정한다. 이 2개의 물체도 질점(부피와 모양이 없이 질량만 가진 물체)이라고 가정한다. 질량이 있으므로 두 질점 사이에는 만유인력이 작용한다. 이런 조건에서 이 두 질점의 운동 방정식을 세워보려고 한다. 이와 같이 '만유인력 하에서의 두 질점의 운동에 관한 문제'를 이체문제(two-body problem)라고 한다. 그림과 같이 질량 \(M\)과 질량 \(m\)인 두 질점이 거리 \(r\)만큼 떨어져 있고, 두 질점 간에는 오직 만유인력만 작용한다고 가정한다. 그림에는 관성좌표계 \(\{i\}\)도 표시했다. 뉴턴의 제2법칙을 적용하려면 관성좌표계가 필요하기 때문이다. 그러면 만유인력의 법칙에 의하여 질점 \(M\)에는 질점 \(m\)방향으로 힘이 작용하므로 질점.. 2021. 1. 11.