본문 바로가기

분류 전체보기328

평평한 지구 가정에 의한 미사일 운동 방정식 유도 단거리 미사일의 경우 지구 자전속도, 중력 가속도 방향, 지표면의 곡률 등의 차이는 미사일 운동에 큰 영향을 끼치지 못한다. 이 경우에는 '평평한 지구 가정'을 적용할 수 있다. 평평한 지구 가정이란 지구가 자전하지 않고 지면이 평평한 것으로 가정하겠다는 뜻이다. 그러면 지표면에 고정된 한 점을 원점으로 한 고정 NED 좌표계(fixed local tangent frame) \(\{n\}\) 을 관성좌표계로 간주할 수 있다(일반적으로 미사일 운동을 위한 좌표계는 \(\{i\} \to \{e\} \to \{n\} \to \{d\} \to \{m\} \to \{b\}\) 순으로 전개된다). 그리고 지구 중력가속도 방향은 항상 NED 좌표계의 Down 방향(\(\hat{n}_3\))이므로 다음과 같이 쓸 수 .. 2021. 12. 22.
ECEF 좌표계에서 미사일 운동 방정식 유도 지구 중심에서 미사일의 위치까지의 위치 벡터를 \(\vec{r}\) 이라고 하고 미사일을 질량 \(m\) 인 질점이라고 가정하면, 뉴턴의 운동법칙에 의해서 미사일 운동 방정식은 다음과 같이 주어진다. \[ \frac{^id}{dt} \left( m \frac{^id\vec{r}}{dt} \right) = \vec{L}+\vec{D}+m \vec{g} \tag{1} \] 여기서 \(\vec{L}\) 은 양력, \(\vec{D}\) 는 항력, \(\vec{g}\) 는 중력가속도다. 식 (1)에서 중요한 점은 질량 \(m\) 이 상수가 아니라 시간의 함수라는 것이다. 그럼에도 불구하고 식 (1)을 아래 식과 같이 미분하면 안된다. \[ \frac{^id}{dt} \left( m \frac{^id \vec{r}.. 2021. 12. 21.
미사일 좌표계의 정의 미사일 운동 방정식을 세우기 위해서는 상황에 따라 다음과 같이 여러 개의 좌표계가 필요하다. (1) ECI (earth-centered inertial)와 ECEF (earth-centered earth-fixed) 좌표계: ECI 좌표계 \(\{i\}\) 와 ECEF 좌표계 \(\{e\}\) 좌표계는 다음 그림과 같이 정의한다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \[ ^i \vec{\omega}^e = \omega_{ie} \hat{e}_3 \tag{1} \] 이며 지구자전 각속도 \(\omega_{ie}\) 는 약 \(360^0/day\) 로서 WGS-84(World Geodetic System 1984)의 국제 표준값은 \(\omega_{ie} = 7.291151467 \time.. 2021. 12. 20.
[PSOC-5] 가우시안 쿼드래처 (Gaussian Quadrature) 가우시안 쿼드래처(Gaussian quadrature)는 구간 \([-1, 1]\) 에서 어떤 함수 \(f(\tau)\) 의 적분값을 적분 구간내의 특정 지점에서의 함수값의 가중치 합으로 계산하는 수치적분 방법이다. \[ \int_{-1}^1 f(\tau) \ d \tau \approx \sum_{i=1}^N w_i f(\tau_i) \tag{1} \] 여기서 적분 구간내의 특정 지점인 \(\tau =\tau_1, \tau_2, ..., \tau_N\) 을 쿼드래처 포인트라고 하고, \(w_i\) 를 쿼드래처 포인트의 가중치(weighting)이라고 한다. 가우시안 쿼드래처의 정확도는 쿼드래처 포인트의 갯수와 점 사이의 간격에 달려있다. 함수 \(f(\tau)\) 를 \((N-1)\) 차 라그랑지 보간 .. 2021. 12. 18.
[PSOC-4] 라그랑지 보간 다항식 \(N\) 개의 임의의 점 \(t_i\) 에서 함수 \(f(t)\) 의 값 \(f(t_i)\) 가 주어졌을 때, \(N\) 개의 점 \(f(t_i)\) 를 지나는 \((N-1)\) 차 라그랑지 보간 다항식(Lagrange interpolation polynomials) \(p(t)\) 는 다음과 같이 주어진다. \[ f(t) \approx p(t) = \sum_{i=1}^N f(t_i ) L_i (t) \tag{1} \] 여기서 \(t_i\) 를 보간점(interpolating point)라고 한다. 또한 \(L_i (t)\) 를 \((N-1)\) 차 라그랑지 기저 다항식(Lagrange basis polynomials) 또는 라그랑지 다항식이라고 하며 다음과 같이 정의한다. \[ L_i (t)= \pr.. 2021. 12. 17.
[PSOC-3] 가우스 포인트 (Gauss Points) 가우스 포인트(Gauss points)는 \([-1, 1]\) 의 구간에서 정의되는 점들의 집합으로서 점(point)간의 간격이 서로 다르다는 특징이 있다. 가우스 포인트는 라그랑지 보간 다항식(Lagrange interpolation polynomials)의 보간점(interpolating point), 가우스 쿼드래처(Gauss quadrature)의 쿼드래처 포인트(quadrature point), 그리고 유사 스펙트럴 방법(pseudospectral method)의 콜로케이션 포인트(collocation point)로 사용된다. 가우스 포인트는 다음 3가지가 있으며, 각각 다음과 같이 정의된다. (a) LGL (Legendre-Gauss-Lobatto) 포인트: LGL 포인트는 \((N-1)\) .. 2021. 12. 16.
[PSOC-2] 르장드르 다항식 (Legendre Polynomials) 르장드르 다항식(Legendre polynomials)은 다음 르장드르 미분방정식을 만족하는 다항식 \(P_N (\tau)\) 이다. \[ (1-\tau^2 ) \ddot{P}_N (\tau)-2 \tau \dot{P}_N (\tau)+N(N+1) P_N (\tau)=0, \ \ \ \ N=0, 1, 2, ... \tag{1} \] 여기서 독립변수 \(\tau\) 는 \([-1, 1]\) 의 범위를 갖는다. \(P_N (\tau)\) 을 \(N\) 차 르장드르 다항식이라고 한다. \(N=0\) 일 때의 미분 방정식의 해, 즉 \(0\) 차 르장드르 다항식은 \(P_0 (\tau)=1\) 이고, \(N=1\) 일 때의 해는 \(P_1 (\tau)=\tau\) 이다. \(N \ge 2\) 일 때는 다음과 같.. 2021. 12. 15.
[PSOC-1] 유사 스펙트럴 기반 최적제어 개요 대부분의 연속시간 최적제어 문제는 해석적으로 풀기가 매우 어렵기 때문에 수치적인 방법이 사용된다. 최적제어에 사용되는 두 가지 유형의 수치적 방법에는 간접방법(indirect method)과 직접방법(direct method)이 있다. 간접방법에서는, 우선 변분법(calculus of variation)을 사용하여 최적 필요조건을 유도한 후, 2점 경계값 문제(TPBVP, two-point boundary value problem) 또는 다중점 경계값 문제(MPBVP, multi-point boundary value problem)를 푼다. 이 방법의 주요 장점은 높은 정확도와 빠른 수렴이다. 그러나 몇 가지 단점이 있다. 첫째, 복잡한 제약 조건을 고려할 때, 필요한 조건에 대한 해석식을 도출하는 것이.. 2021. 12. 15.
궤도 에너지와 속도 운동에너지(kinetic energy)와 위치에너지(potential energy)의 합이 기계적인 에너지 \(\mathcal{E}\) 이며, 이 에너지는 운동 궤도상에서 일정하게 보존된다. \[ \frac{v^2}{2}- \frac{\mu }{r} = \mathcal{E} = \mbox{constant} \tag{1} \] 여기서 \(\frac{v^2}{2} \) 은 단위질량당 운동에너지, \(-\frac{\mu}{r}\) 는 단위질량당 위치에너지이다. 이제 이체문제(two-body problem)에서 질점 \(M\) 을 지구로, 질점 \(m\) 을 우주비행체로 보고 논의를 진행하자. 궤도의 에너지 \(\mathcal{E}\) 는 궤도상에서 모두 동일하므로 근지점(perigee)이나 원지점(apogee.. 2021. 12. 14.
케플러(Kepler) 법칙의 증명 케플러(Kepler)의 세가지 법칙은 이체문제(two-body problem) 가정 하에 뉴턴의 제2법칙과 만유인력의 법칙을 이용하여 증명할 수 있다. 케플러의 법칙은 주로 화성을 관찰하여 얻은 경험적인 법칙이지만 지구를 비롯한 모든 행성뿐만 아니라 우주비행체에도 적용된다. 케플러의 제1법칙은 행성의 궤도는 태양을 초점으로 하는 타원궤도라는 것이다. 이체문제 가정 하에 질점 \(m\) 이 가질 수 있는 궤도의 모양은 타원궤도를 포함하여 4가지라는 것을 이미 증명하였다. 여기서 질점 \(m\) 을 행성, 질점 \(M\) 을 태양으로 보면 된다. 이는 케플러 제1법칙의 확장을 의미한다. 케플러의 제2법칙은 질점 \(M\) 과 질점 \(m\) (태양과 행성의 중심)을 연결한 선은 동일한 시간동안 동일한 면적을.. 2021. 12. 13.