본문 바로가기

분류 전체보기357

[GP-2] GP 회귀 (GP Regression) 가우시안 프로세스 \(f(\mathbf{x})\) 의 관측값에는 노이즈가 포함되어 있다고 가정하는 것이 보다 실제적이다. 노이즈를 평균이 \(0\) 이고 분산이 \(\sigma_n^2\) 인 가우시안으로 모델링한다면 GP(Gaussian process) 측정 모델은 다음과 같다. \[ \begin{align} & y=f(\mathbf{x})+ \epsilon \tag{1} \\ \\ & \ \ \ \ \ \epsilon \sim \mathcal{N} (0, \sigma_n^2 ), \\ \\ & \ \ \ \ \ f(\mathbf{x}) \sim \mathcal{GP}( \mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}' ) ) \end{align} \] 노이즈가 가우시안 프로세.. 2022. 6. 30.
[GP-1] 가우시안 프로세스 (Gaussian Process)의 개념 랜덤변수(random variable)는 확률 실험의 결과에 실숫값을 대응시키는 함수로 정의된다. 또한 랜덤 프로세스(random process)는 어떤 파라미터로 인덱스(index)된 무한개의 랜덤변수의 집합으로 정의된다. 즉 랜덤 프로세스는 확률 실험 결과와 인덱스 파라미터 등 두 개의 변수로 구성된 함수로 생각할 수 있다. 보통 인덱스로 시간 파라미터가 많이 사용되지만 공간 파라미터도 인덱스가 될 수 있다. 여기서는 인덱스를 공간 파라미터인 \(\mathbf{x}\) 로, 랜덤 프로세스를 \(f\) 로 표기하겠다. 그러면 랜덤 프로세스를 다음과 같이 함수 형태로 쓸 수 있다. \[ f(e,\mathbf{x}) \] 여기서 \(e\) 는 확률 실험을 나타낸다. 하지만 일반적으로 확률 실험을 명시적으로.. 2022. 6. 26.
Vorticity 미분 방정식 VPM (Vortex Particle Method)은 비압축성 유체에 대한 Navier-Stokes 방정식을 풀기 위한 효율적인 수치 기법으로서, 격자가 필요 없기 (meshless) 때문에 유한체적법 (FVM, finite volume method)과 같은 기존의 격자(mesh) 기반 수치 기법에 대한 대안으로서 주목받고 있다. VPM은 Vorticity 미분 방정식을 지배 방정식으로 사용하기 때문에 이를 유도해 보고자 한다. 먼저 체적력을 무시할 수 있을 때 비압축성(incompressible) 뉴톤유체에 대한 Navier-Stokes 방정식은 다음과 같다. \[ \begin{align} & \nabla \cdot \mathbf{V} = 0 \tag{1} \\ \\ & \frac{\partial \m.. 2022. 5. 29.
Vorticity의 정의 어떤 유동장에서 운동하는 미소 유체요소(infinitesimal fluid element)를 생각해보자. 아래 그림과 같이 이 유체요소는 운동하면서 회전할 수도 있고 모양이 변할 수도 있다. 이 회전 및 모양의 변화 정도는 유체의 속도장에 따라 다르다. 여기서는 유체요소의 회전에 집중하여 유체의 속도장과 유체요소의 회전 각속도(angular velocity)의 관계에 대해서 알아보고자 한다. 논의를 간단하게 하기 위해서 일단 유체가 2차원 평면상을 흐른다고 하자. 아래 그림과 같이 시간 \(t\) 에서 이 유체요소의 모양이 직사각형이라고 가정한다. 시간이 \(\Delta t\) 만큼 흐르면 유체요소의 꼭지점 B와 C는 꼭지점 A에 대해서 각각 상대 위치가 변화한다. 유체요소의 각 점의 상대 속도가 그림에.. 2022. 5. 29.
유동장의 시간미분에 대해서 유동장(flow field)은 압력, 밀도, 온도, 속도 등 4개의 파라미터로 정의할 수 있는데 모두 위치와 시간의 함수이다. 예를 들면 밀도는 기준 좌표계에서의 위치 \((x,y,z)\) 와 함께 시간 \(t\) 의 함수로 주어진다. \[ \rho = \rho (x,y,z,t) \tag{1} \] 따라서 어떤 파라미터를 시간으로 미분할 경우 두 종류의 도함수(derivative)가 나온다. 바로 \(d/dt\) 와 \(\partial /\partial t\) 이다. 두 시간미분의 물리적인 의미를 알아보자. 아래 그림과 같이 어떤 유동장에서 운동하는 유체요소(fluid element)를 생각해보자. 시간 \(t_1\) 일 때 이 유체요소는 위치 \((x_1,y_1,z_1)\) 에 있다고 하자. 그러면 이.. 2022. 5. 24.
[U-Net] 망막 혈관 세그멘테이션 (Retinal Vessel Segmentation) U-Net을 망막 혈관 세그멘테이션(retinal blood vessel segmentation) 문제에 적용해 보자. 아래 사이트에 가면 데이터셋과 관련 논문, 그리고 텐서플로나 파이토치로 작성한 코드들이 많이 나온다. Papers with Code - Retinal Vessel Segmentation Retinal vessel segmentation is the task of segmenting vessels in retina imagery. ( Image credit: [LadderNet](https://github.com/juntang-zhuang/LadderNet) ) paperswithcode.com 사이트에는 4가지 데이터셋이 나와 있는데, 이중 DRIVE (Digital Retinal Im.. 2022. 5. 11.
[U-Net] U-Net 구조 이미지 세그멘테이션(image segmentation)은 이미지의 모든 픽셀이 어떤 카테고리(예를 들면 자동차, 사람, 도로 등)에 속하는지 분류하는 것을 말한다. 이미지 전체에 대해 단일 카테고리를 예측하는 이미지 분류(image classification)와는 달리, 이미지 세그멘테이션은 픽셀 단위의 분류를 수행하므로 일반적으로 더 어려운 문제로 인식되고 있다. 위 그림에서 semantic segmentation은 이미지 내에 있는 객체들을 의미 있는 단위로 분할해내는 것이고, instance segmentation 은 같은 카테고리에 속하는 서로 다른 객체까지 더 분할하여 semantic segmentation 범위를 확장한 것이다. 이미지 세그멘테이션은 의료 이미지 분석(종양 경계 추출 등), 자.. 2022. 5. 11.
[PSOC-7] 유사 스펙트럴 방법 예제 유사 스펙트럴(pseudospectral) 방법은 다음과 같이 경계조건을 갖는 미분방정식이 있을 때, \[ \begin{align} & \mathcal{D} \mathbf{x}(t)=\mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 방정식의 미지해 \(\mathbf{x}(t)\) 를 다음과 같은 형식을 갖는 \(\mathbf{X}(t)\) 로 근사적으로 구하는 방법이다. \[ \mathbf{x}(t) \approx \mathbf{X}(t)= \sum_{i=1}^N \mathbf{d}_i .. 2022. 4. 24.
[PSOC-6] 유사 스펙트럴 방법 (Pseudospectral Method) 다음과 같이 경계조건을 갖는 미분방정식이 있다고 하자. \[ \begin{align} & \mathcal{D} \mathbf{x}(t)= \mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 여기서 \(\mathcal{D}\) 는 미분, \(\mathcal{B}\) 는 경계조건을 뜻하는 연산자이다. 위 미분방정식의 미지해 \(\mathbf{x}(t)\) 를 근사적으로 구한 해(approximate solution) \(\mathbf{X}(t)\) 를 다음과 같은 형식으로 구하고자 한다. \[.. 2022. 4. 23.
라인서치 (Line Search) 방법 제약조건이 없는 최적화 문제 \[ \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \] 는 보통 초기 추측값 \(\mathbf{x}^{(0)}\) 에서 시작하여 이터레이션(iteration)을 통하여 일련의 중간 단계의 해 \(\mathbf{x}^{(k)}\) 를 구하며 점진적으로 최적해에 접근하는 방법을 취한다. 이터레이션의 다음 단계의 해 \(\mathbf{x}^{(k+1)}\) 는 현 단계 해 \(\mathbf{x}^{(k)}\) 에서 일정 스텝(step) \(\Delta \mathbf{x}^{(k)}\) 으로 일정한 스텝사이즈 \(\eta^{(k)}\) 만큼 이동시켜 구하게 된다. \[ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \eta^{(k.. 2022. 4. 21.