본문 바로가기

Vorticity5

볼텍스 유동 (Vortex flow) 2차원 평면에서 속도 포텐셜이 다음과 같이 주어지는 유동을 포인트(point) 볼텍스 유동(와류, vortex flow)이라고 한다. \[ \phi(r, \theta)= K \theta \tag{1} \] 여기서 \(r, \theta\) 는 극좌표계(polar coordinates)의 좌표이고 \(K\) 는 임의의 상수다. 식 (1)은 다음과 같이 라플라스 방정식을 만족한다. \[ \nabla^2 \phi= \frac{\partial^2 \phi}{\partial r^2 }+ \frac{1}{r} \frac{ \partial \phi}{\partial r} +\frac{1}{r^2} \frac{ \partial^2 \phi}{\partial \theta^2 }=0 \tag{2} \] 따라서 볼텍스 유동은.. 2023. 10. 15.
포텐셜 유동 (Potential flow) 유동장의 모든 지점에서 vorticity(와도)가 \(0\) 이면 비회전 유동 (irrotational flow)이라고 한다 (https://pasus.tistory.com/207). \[ \nabla \times \mathbf{V}=0 \tag{1} \] 벡터의 미분 관계식에 의하면 속도벡터가 비회전 벡터장(irrotational vector filed)이라면 속도벡터는 어떤 스칼라장(scalar field) \(\phi(x,y,z,t)\) 의 그래디언트(gradient)와 같다. 즉, 다음 식이 성립한다. \[ \mathbf{V}(x,y,z,t)= \nabla \phi(x,y,z,t) \tag{2} \] 물론 그 반대도 성립한다. 즉 속도벡터가 어떤 스칼라장의 그래디언트라면 속도벡터장은 비회전이다. .. 2023. 10. 13.
켈빈의 순환 정리 (Kelvin’s Circulation Theorem) 다음 그림과 같이 유동장에 고정된 폐곡선 \(C\) 가 있다고 하자. \(\mathbf{V}\) 와 \(d \mathbf{s}\) 는 각각 \(C\) 의 한 점에서의 유체의 속도와 미소 선분벡터를 의미한다. 순환(circulation) \(\Gamma\) 는 유동장에 고정된 폐곡선 \(C\) 를 반시계 방향으로 따라가며 유체의 속도를 선 적분한 것으로 정의한다. \[ \Gamma = -\oint_C \mathbf{V} \cdot d \mathbf{s} \tag{1} \] 순환의 정의에서 마이너스(\(-\)) 부호를 사용한 이유는 선 적분은 관례상 시계반대 방향이 플러스(\(+\))인 반면 항공역학에서는 시계 방향을 플러스(\(+\))로 보기 때문이다. 책에 따라서는 마이너스 부호를 사용하지 않고 정의하는.. 2023. 10. 10.
Vorticity의 정의 어떤 유동장에서 운동하는 미소 유체요소(infinitesimal fluid element)를 생각해보자. 아래 그림과 같이 이 유체요소는 운동하면서 회전할 수도 있고 모양이 변할 수도 있다. 이 회전 및 모양의 변화 정도는 유체의 속도장에 따라 다르다. 여기서는 유체요소의 회전에 집중하여 유체의 속도장과 유체요소의 회전 각속도(angular velocity)의 관계에 대해서 알아보고자 한다. 논의를 간단하게 하기 위해서 일단 유체가 2차원 평면상을 흐른다고 하자. 아래 그림과 같이 시간 \(t\) 에서 이 유체요소의 모양이 직사각형이라고 가정한다. 시간이 \(\Delta t\) 만큼 흐르면 유체요소의 꼭지점 B와 C는 꼭지점 A에 대해서 각각 상대 위치가 변화한다. 유체요소의 각 점의 상대 속도가 그림에.. 2022. 5. 29.
Navier-Stokes 방정식 - 2 Navier-Stokes 방정식은 비선형 연립 편미분 방정식으로서 이 방정식의 해가 항상 존재하는지 여부도 아직 증명되지 않은 밀레니엄 문제 7개 중의 하나로 꼽힌다. 극히 단순한 경우를 제외하고는 해석적인 해가 존재하지 않을 뿐만 아니라, 수치해(numerical solution) 마저 구하기가 매우 어렵다. 비압축성(incompressible) 유체를 가정한다면 밀도 \(\rho\) 는 상수이므로 연속 방정식은 다음과 같이 된다. \[ \nabla \cdot \mathbf{V} = 0 \tag{1} \] 식 (1)을 이용하면 Navier-Stokes 방정식에서 \(x\) 축 성분은 다음과 같이 간략화된다. \[ \begin{align} \rho \left( \frac{\partial u}{\parti.. 2021. 8. 10.