본문 바로가기

DCM10

오일러의 회전 정리 (Euler’s Rotation Theorem) 오일러각 좌표변환 방법에서 알아본 회전축은 좌표계의 \(x\) 축, \(y\) 축, \(z\) 축이었다. 하지만 좌표계를 구성하는 좌표축만이 아니라 임의의 축, 즉 임의의 방향을 중심으로 좌표계를 회전시킬 수도 있다. 단위벡터는 크기가 \(1\) 인 벡터이기 때문에 방향을 표시하는데 자주 쓰인다. 여기서도 회전축 방향을 정하는데 단위벡터를 이용하기로 하고 기호로 \(\hat{p}\) 으로 표시하기로 한다. 좌표계 \(\{a\}\) 를 회전축 \(\hat{p}\) 축을 중심으로 \(\beta\) 만큼 회전시키면 새로운 좌표계로 변환되는데 이 좌표계를 \(\{b\}\) 라고 하자. 그러면 그림에서 보듯이 좌표계 \(\{a\}\) 의 좌표축과 회전축 사이의 각도는 좌표계 \(\{b\}\) 의 좌표축과 회전축 .. 2022. 3. 22.
라그랑지 방정식을 이용한 강체 운동방정식 유도 강체(rigid body)의 다양한 지점에 가해지는 모든 외력(external force)은 질량중심(center of mass)에 가해지는 총 외력으로 합산할 수 있고 질량중심은 마치 강체의 모든 질량이 그 중심에 집중되어 있는 질점(point mass)처럼 운동한다. 또한 외력은 강체의 다양한 지점에서 작용하기 때문에 질량중심에 대해서 모멘트를 만들고 이 모멘트는 질량중심에 대한 회전운동을 생성한다. 이와 같이 강체의 운동은 질량중심의 병진운동과 질량중심에 대한 회전운동으로 분리할 수 있다. 이제 강체 운동방정식을 라그랑지 방정식(Lagrange's Equation)을 이용하여 유도해 보도록 하겠다. 강체의 운동에너지도 질량중심의 병진 운동에너지와 질량중심에 대한 회전 운동에너지의 합으로 표현할 수 .. 2022. 2. 14.
NED 좌표계와 LLH 좌표계간의 속도 변환식 미사일의 속도 \(\vec{V}\) 는 ECEF 기준, 즉 지면 기준의 상대적인 속도이므로 다음과 같다. \[ \vec{V} = \frac{^ed\vec{r}}{dt} \tag{1} \] 여기서 \(\vec{r}\) 는 지구 중심에서 미사일까지의 위치벡터다. 한편 미사일의 질량 중심점을 원점으로 하고 속도 방향을 x축, 지표면과 수평인 평면에서 속도 방향의 오른쪽 방향을 y축으로 하는 좌표계를 미사일 운동 좌표계 \(\{d\}\) 로 정의하므로 속도벡터를 좌표계 \(\{d\}\) 로 표시하면 다음과 같다. \[ V^d= \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix} \tag{2} \] 여기서 \(V\) 는 \(\vec{V}\) 의 크기다. NED(North-East-Down).. 2022. 1. 9.
ECEF 좌표계와 LLH 좌표계 지구중심지구고정 좌표계(ECEF, earth-centered earth-fixed frame)는 지구의 중심에 원점이 위치하며 지구에 고정되어 있어서 지구와 함께 자전하는 좌표계이다. 지구와 함께 자전한다는 점에서 ECI 좌표계와는 다르다. 기호로는 {e}로 표시한다. 좌표계의 \(\hat{e}_1-\hat{e}_2\) 평면은 지구의 적도면에 위치한다. \(\hat{e}_3\) 축은 ECI 좌표계의 \(\hat{i}_3\) 와 같은 방향으로 지구의 자전축 방향이며 \(\hat{e}_1\) 축은 지구 적도와 그리니치(Greenwich) 자오선이 만나는 점을 향한다. \(\hat{e}_2\) 축은 오른손 법칙에 의해 정해진다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \(^i \vec{\omeg.. 2021. 12. 30.
원형 지구 가정에 의한 미사일 운동 방정식 유도 지구는 자전의 영향으로 약간 타원형이다. 그래서 위도와 경도를 계산하기가 복잡하고, 지면과 수직인 방향이 지구의 중심을 향하지 않기 때문에 수식 전개가 어려워진다. 하지만 지구가 타원형이 아니고 원형이라고 가정하면 이러한 문제가 해결된다. 지구는 이심율이 매우 작은 거의 원형에 가까운 타원형이기 때문에 원형 지구 가정은 지구 재진입 비행체나 중/장거리 미사일의 운동 방정식을 세울 때 많이 사용된다. 원형 지구 가정에 의해서 다음 식이 성립한다. \[ \begin{align} & \vec{r}=-r \ \hat{n}_3 \tag{1} \\ \\ & r=R_{mean}+h \\ \\ & \vec{g}=g \ \hat{n}_3 \end{align} \] 여기서 \(R_{mean}\) 은 지구 평균 반지름이고 .. 2021. 12. 23.
미사일 좌표계의 정의 미사일 운동 방정식을 세우기 위해서는 상황에 따라 다음과 같이 여러 개의 좌표계가 필요하다. (1) ECI (earth-centered inertial)와 ECEF (earth-centered earth-fixed) 좌표계: ECI 좌표계 \(\{i\}\) 와 ECEF 좌표계 \(\{e\}\) 좌표계는 다음 그림과 같이 정의한다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \[ ^i \vec{\omega}^e = \omega_{ie} \hat{e}_3 \tag{1} \] 이며 지구자전 각속도 \(\omega_{ie}\) 는 약 \(360^0/day\) 로서 WGS-84(World Geodetic System 1984)의 국제 표준값은 \(\omega_{ie} = 7.291151467 \time.. 2021. 12. 20.
[CR3BP-1] 운동방정식 유도 삼체문제(three-body problem)에서 세 질점 중 한 개의 질점의 질량 \(m_3\)이 다른 두 질점 \(m_1\), \(m_2\)보다 훨씬 작아서 무시할 수 있을 정도라고 가정해 보자. 그러면 질점 \(m_3\)는 두 질점 \(m_1\) 및 \(m_2\)에는 어떤 영향도 미치지 못할 것이므로 두 질점 \(m_1\)과 \(m_2\)의 운동은 이체문제(two-body problem)로 간주할 있다. 이와 같이 삼체문제를 특수한 경우로 제한한 문제를 '제한된 삼체문제(restricted three-body problem)' 라고 한다. 제한된 삼체문제에서 두 질점 \(m_1\)과 \(m_2\)의 운동은 이체문제를 따르므로 그 궤도는 두 질점 공통의 질량중심점을 중심으로 한 원, 타원, 포물선, 쌍.. 2021. 4. 8.
좌표변환 방법 비교 좌표변환 방법으로서 방향코사인행렬(DCM), 오일러각, 그리고 쿼터니언에 대해서 알아보았다. 이제 각각의 장단점을 비교해 보자. 먼저 DCM은 9개의 파라미터로 좌표변환을 표현한다. 그 중 6개는 구속조건을 만족해야 한다. 구속조건은 DCM이 단위직교 행렬(orthonormal matrix)이어야 한다는 것이었다. 이 구속 조건을 맞추기가 쉽지 않다는 것이 DCM의 큰 단점이다. 시간이 흐름에 따라서 좌표계의 자세가 달라질 경우 DCM의 미분 방정식을 세우고 이 방정식을 적분하여 매시간 마다 DCM을 계산해야 하는데, 이 때 수치 오차 때문에 계산된 DCM이 단위직교 행렬이 안될 수가 있다. DCM은 반드시 단위직교 행렬이어야 하므로 강제적으로 단위직교 행렬로 만들어야 할 필요가 있는데, 이것이 쉽지 않.. 2021. 2. 8.
방향코사인행렬 (DCM) DCM은 Direction Cosine Matrix의 약자다. 방향코사인행렬 또는 회전행렬(rotation matrix)이라고 한다. 기호로는 \(C_b^a\) 라고 쓰고 위 첨자와 아래 첨자에 각각 좌표계를 표시한다. 그리고 좌표계 \(\{a\}\)에서 좌표계 \(\{b\}\)로의 DCM이라고 읽는다. DCM은 \(3 \times 3\) 행렬이다. 그러면 9개의 행렬 성분(element)이 있는데, 각각은 다음과 같이 정의한다. \[ C_b^a = \begin{bmatrix} \hat{a}_1 \cdot \hat{b}_1 & \hat{a}_1 \cdot \hat{b}_2 & \hat{a}_1 \cdot \hat{b}_3 \\ \hat{a}_2 \cdot \hat{b}_1 & \hat{a}_2 \cdot.. 2021. 2. 6.
벡터를 직교 좌표계로 표현하기 스칼라(scalar)는 크기만 가진 어떤 양이다. 반면에 벡터(vector)는 크기와 방향을 갖는 양이다. 벡터는 통상적으로 영문 소문자위에 화살표로 표기한다. 즉 벡터 \(u\)는 \(\vec{u}\)로 표기한다. 또한 벡터는 화살표로 그린다. 화살표의 크기는 벡터의 크기를 나타내며, 화살표의 방향은 벡터의 방향을 나타낸다. 벡터의 크기는 벡터의 절대값으로 표기한다. 벡터 \(\vec{u}\)의 크기는 \(\left\vert \vec{u} \right\vert\)다. 두 개의 벡터는 크기와 방향이 모두 같으면 '같다'고 한다. 아래 그림에서 두 벡터 \(\vec{u}\)와 \(\vec{w}\)는 출발점이 다르지만 크기와 방향이 같으므로 같다. 즉, \(\vec{u}=\vec{w}\) 이다. 벡터는 특정.. 2021. 2. 5.