본문 바로가기

최적제어18

[Continuous-Time] 고정최종상태 (Fixed-final-state) LQR 다음과 같이 선형 시스템이 있다. \[ \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \tag{1} \] 이 시스템의 초기 시간 \(t_0\) 와 초기 상태변수 \(\mathbf{x}(t_0)\) 는 주어졌다고 가정한다. 또한 최종 시간 \(t_f\) 와 최종 상태변수 \(\mathbf{x}(t_f)\) 도 미리 원하는 값 \(\mathbf{x}_f\) 로 설정되었다고 가정한다. 따라서 \(dt_0=0\), \(d\mathbf{x}(t_0 )=0\), \(dt_f=0\), \(d\mathbf{x}(t_f )=0\) 이 되기 때문에 최적제어의 필요조건을 정리한 표에 의하면 경계조건은 자동으로 만족된다. 이 시스템의 비용함수도 다음과 같이 고정된 시간 구간 \([t_0, \ t.. 2023. 4. 13.
[Continuous-Time] 최종상태제약 (Final-state-constrained) LQR 다음과 같이 선형 시스템이 주어지고, \[ \dot{\mathbf{x}}=A\mathbf{x}+B \mathbf{u} \tag{1} \] 이 시스템의 목적함수도 다음과 같이 고정된 시간 구간 \([t_0, \ t_f]\) 에서 이차함수로 주어졌다고 하자. \[ J=\frac{1}{2} \mathbf{x}^T (t_f ) S_f \mathbf{x}(t_f )+ \frac{1}{2} \int_{t_0}^{t_f} \left( \mathbf{x}^T Q \mathbf{x}+ \mathbf{u}^T R \mathbf{u} \right) dt \tag{2} \] 최종 상태변수의 제약조건은 다음과 같이 설정되었다고 가정하자. \[ \psi (\mathbf{x}(t_f ), t_f )=C \mathbf{x}(t_f .. 2023. 4. 8.
[Continuous-Time] 최적제어 예제 간단한 최적제어 문제를 풀어보고자 한다. 최적제어 문제는 최종시간이 설정된(fixed) 값으로 주어지는지 아닌지, 그리고 최종 상태변수가 설정된 값으로 주어지는지 아닌지에 따라 다양하게 분류할 수 있다. 대개의 경우 초기시간과 상태변수 초기값은 설정된 값으로 주어진다. 먼저 최종시간과 최종 상태변수가 모두 주어진 경우다. 연속시간 비선형 시스템의 최적제어의 필요조건을 정리한 다음 표에 의하면, 이 경우 경계조건은 자동으로 만족된다. 일정한 속력 \(V\) 로 움직이는 비행체가 있다. 제어 목적은 비행체가 출발지에서 출발하여 비행 시간 \(t_f\) 가 경과한 후 목적지에 최소의 에너지를 사용하여 도착시키는 것이다. 그림에 비행체와 목적지, 출발지간의 기하하적인 관계가 나와 있다. 비행체의 운동 방정식은 .. 2022. 12. 14.
[Continuous-Time] 최적제어 문제 최적제어(optimal control)문제는 여러 가지 물리적인 제약조건을 만족하면서 어떤 성능지표(performance index) 또는 목적함수(objective function)를 최적화하도록 동적 시스템(dynamic system)의 제어변수(control variable)을 결정하는 문제이다. 제약조건(constraints)은 동적 시스템의 동역학과 함께 시스템 제어변수 및 상태변수의 경로 제약조건(path constraints), 상태변수의 초기값(initial value) 및 최종값(final value)에 관한 제약조건(constraint on the initial and final states)을 모두 포함한다. 목적함수는 설계자가 의도한대로 시스템을 움직이면서 의도한 성능을 발휘할 수 .. 2022. 12. 13.
[PSOC-1] 유사 스펙트럴 기반 최적제어 개요 대부분의 연속시간 최적제어 문제는 해석적으로 풀기가 매우 어렵기 때문에 수치적인 방법이 사용된다. 최적제어에 사용되는 두 가지 유형의 수치적 방법에는 간접방법(indirect method)과 직접방법(direct method)이 있다. 간접방법에서는, 우선 변분법(calculus of variation)을 사용하여 최적 필요조건을 유도한 후, 2점 경계값 문제(TPBVP, two-point boundary value problem) 또는 다중점 경계값 문제(MPBVP, multi-point boundary value problem)를 푼다. 이 방법의 주요 장점은 높은 정확도와 빠른 수렴이다. 그러나 몇 가지 단점이 있다. 첫째, 복잡한 제약 조건을 고려할 때, 필요한 조건에 대한 해석식을 도출하는 것이.. 2021. 12. 15.
풍력단지 제어(Wind Farm Control)의 방법 풍력단지에서 전력 손실의 가장 큰 원인 중의 하나는 상류 풍력터빈에 의해 발생하는 후류(wake)로서, 이로 인해 전체 전력의 약 20~40% 가량이 손실된다고 한다. 뿐만 아니라 하류에 있는 풍력터빈은 상류 풍력터빈 보다도 약 80% 가량 더 큰 구조적 하중(loading)을 받는다고 한다. 이러한 문제에 대처하기 위한 풍력단지 제어(wind farm control)로서 일반적으로 두가지 방법이 사용된다. 후류방향제어(WRC, Wake Redirection Control)와 축방향 유도제어(AIC, Axial Induction Control)이다. 연구에 따르면 두 방법 모두 전력 생산을 증가시킬 수 있고 구조적 하중을 줄일 수 있다고 한다. 후류방향제어(WRC)는 상류 풍력터빈의 로터면을 유입되는 바.. 2021. 12. 5.
강화학습 문제 최적제어 문제는 다음과 같이 이산시간(discrete-time) 차분 방정식(difference equation)으로 표현된 비선형 시스템이 있을 때, \[ \mathbf{x}_{t+1} = \mathbf{f}_t ( \mathbf{x}_t, \mathbf{u}_t) \] 시스템이 어떤 스칼라 성능지수(performance index) \( J_i \)를 최소화하도록 제어변수 \( \mathbf{u}_t \in R^m \)를 결정하는 문제다. 성능지수의 일반적인 형태는 다음과 같다. \[ J_i = \phi (T, \mathbf{x}_T )+ \sum_{t=i}^{T-1} g_t ( \mathbf{x}_t, \mathbf{u}_t) \] 여기서 아래 첨자 \(t \)는 시간스텝을 나타내며 \( \math.. 2020. 11. 8.
[Discrete-Time] 최적제어 문제 다음과 같이 이산시간(discrete-time) 차분 방정식(difference equation)으로 표현된 비선형 시스템이 있다. \[ \mathbf{x}_{t+1} = \mathbf{f}_t (\mathbf{x}_t, \mathbf{u}_t) \tag{1} \] 여기서 아래 첨자 \( t \)는 시간스텝을 나타낸다. 일반적으로 시스템을 시변(time-varying)으로 간주하기 때문에 함수 \( \mathbf{f}_t \)에 아래 첨자로 시간 표시를 한다. 시불변 시스템일 경우에는 생략하면 된다. 상태변수는 \( \mathbf{x}_t \in \mathbb{R}^n \), 제어변수는 \( \mathbf{u}_t \in \mathbb{R}^p \)이다. 최적제어 문제는 시스템이 어떤 스칼라 목적함수를 .. 2020. 10. 27.