본문 바로가기

분류 전체보기372

고전 궤도요소 (Classical Orbital Elements) 고전 궤도요소 (COE, classical orbital elements)는 우주비행체의 궤도 운동을 기술하기 위해 사용되는 수학적인 방법으로서, 궤도의 크기, 모양, 자세를 정의하기 위한 5개의 파라미터와 궤도상에 우주비행체의 위치를 나타내기 위한 1개의 파라미터로 구성되어 있다. 고전 궤도요소는 궤도 운동을 시각적으로 표현하는데 매우 편리하다. 아래 그림은 고전 궤도요소를 그림으로 보여주고 있는데, 6개 파라미터의 자세한 정의는 다음과 같다. 통반경 (semi-latus rectum) 또는 장반경 (semi-major axis): 통반경은 궤도의 주축 (major-axis)에서 궤도까지의 수직거리이다. 통반경은 궤도의 크기를 나타내며 기호로는 \(p\)로 표시한다. 통반경 대신에 장반경 (semi-m.. 2023. 7. 24.
[CR3BP] 주기궤도의 안정성 어떤 \(\bar{\mathbf{x}}(t)\) 가 다음 미분방정식의 해로 주어지는 주기(period)가 \(T\) 인 주기궤도라고 하자.  \[ \dot{\bar{\mathbf{x}}}(t)= \mathbf{f}( \bar{\mathbf{x}} (t)) \tag{1} \]   \(\bar{\mathbf{x}}(t)\) 에 약간의 섭동 \(\delta \mathbf{x}(t)\) 을 주고 식 (1)에 대입한 후 테일러 시리즈 1차 근사식을 구하면 다음과 같이 된다.  \[ \begin{align} & \dot{\bar{\mathbf{x}}} (t)+ \delta \dot{\mathbf{x}}(t) \approx \mathbf{f}( \bar{\mathbf{x}}(t))+ \left. \frac{ \par.. 2023. 7. 22.
[PSOC-11] 가우스 유사 스펙트럴 (GPM) 기반 최적제어 가우스 유사 스펙트럴 방법(GPM, Gauss pseudospectral method)에서는 \(N\) 개의 LG(Legendre-Gauss) 포인트를 콜로케이션 포인트로 사용하고, LG 포인트에 \(\tau_0=-1\) 을 포함한 점을 보간점으로 사용한다. 이산화 점은 보간점에 \(\tau_{N+1}=1\) 을 포함한 것이다. 따라서 가우스 유사 스펙트럴 방법은 \(N\) 개의 콜로케이션 포인트, \(N+1\) 개의 보간점와 \(N+2\) 개의 이산화 점을 사용한다. LG 포인트는 \(N\) 차 르장드르 다항식 \(P_N (\tau)\) 의 해로 구성되어 있다. 가우스 유사 스펙트럴 방법에서는 상태변수 \(\mathbf{x}(\tau)\) 를 \( N\) 차 라그랑지 다항식으로 근사화한다. \[ \ma.. 2023. 7. 20.
[PSOC-10] 라다우 유사 스펙트럴 (RPM) 기반 최적제어 라다우 유사 스펙트럴 방법(RPM, Radau pseudospectral method)에서는 \(N\) 개의 LGR(Legendre-Gauss-Radau) 포인트를 콜로케이션 포인트로 사용하고, LGR 포인트에 \(\tau_{N+1}=1\) 점을 포함한 것을 보간점으로 사용한다. LGR 포인트는 \(N\) 차 르장드르(Legendre) 다항식과 \((N-1)\) 차 르장드르 다항식의 합인 \(P_N (\tau)+P_{N-1} (\tau)\) 의 해로 구성되어 있다. 라다우 유사 스펙트럴 방법에서는 상태변수 \(\mathbf{x}(\tau)\) 를 \( N \) 차 라그랑지 다항식으로 근사화한다. \[ \mathbf{x}( \tau ) \approx \mathbf{X} (\tau)= \sum_{i=1}^{.. 2023. 7. 18.
[PSOC-9] 로바토 유사 스펙트럴 (LPM) 기반 최적제어 로바토 유사 스펙트럴 방법(LPM, Lobatto pseudospectral method)에서는 콜로케이션 포인트와 보간점이 동일하다. \(N\) 개의 LGL(Legendre-Gauss-Lobatto) 포인트를 콜로케이션 포인트와 보간점으로 모두 사용한다. LGL 포인트는 \((N-1)\) 차 르장드르(Legendre) 미분 다항식 \(\dot{P}_{N-1} (\tau)\) 의 해와 \(\tau=-1, \ \tau=1\) 로 구성되어 있다. 로바토 유사 스펙트럴 방법에서는 상태변수 \(\mathbf{x}(\tau)\) 를 \((N-1)\)차 라그랑지 다항식으로 근사화한다. \[ \mathbf{x}( \tau ) \approx \mathbf{X} (\tau)= \sum_{i=1}^N \mathbf{X}_.. 2023. 7. 17.
[PSOC-8] 유사 스펙트럴 기반 최적제어 문제 연속시간 최적제어에 사용되는 두 가지 유형의 수치적 방법 중 직접방법(direct method)은 최적제어 문제에서 상태변수와 제어입력을 이산화(discretization)시켜 비선형 프로그래밍 문제(NLP, nonlinear programming problem)로 바꾸는 것이다. 유사 스펙트럴 방법(pseudospectral method)은 지난 10여년 동안 최적제어 분야에서 널리 사용된 직접방법 중의 하나로서 콜로케이션 포인트(collocation point)와 보간점(interpolating point)을 이용하는 것이 핵심이다. 지금까지 살펴본 수학적 배경지식인 라그랑지 보간 다항식, 가우시안 쿼드래처, 유사 스펙트럴 방법 등을 간략히 요약한 다음에 연속시간 최적제어 문제를 비선형 프로그래밍 문.. 2023. 7. 17.
[CR3BP] 헤일로 궤도 (Halo Orbit) 계산 헤일로 궤도(halo orbit)는 라그랑지 포인트 L1, L2, L3 포인트를 중심으로 형성되는 3차원 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 헤일로 궤도는 (x-z) 평면에 대해 대칭이고, (x-z) 평면을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0 ) \\ y(t_0 ) \\ z(t_0 ) \\ \dot{x}(t_0 ) \\ \dot{y}(t_0 ) \\ \dot{z}(t_0 ) \end{bmatrix}= \begin{bmatr.. 2023. 7. 14.
[CR3BP] 리야프노프 궤도 (Lyapunov Orbit) 계산 리야프노프 궤도(Lyapunov orbit)는 (x-y) 평면에서 라그랑지 포인트 L1, L2, L3를 중심으로 공전하는 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 리야프노프 궤도는 x축에 대해 대칭이고, x축을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0) \\ y(t_0) \\ \dot{x}(t_0) \\ \dot{y}(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \\ 0 \\ v_{y0} \end.. 2023. 7. 11.
Matlab ODE에 추가 파라미터 전달 및 이벤트 설정하기 일반적으로 매트랩(Matlab)에서 수치적분하고자 하는 ODE 함수의 구조는 다음과 같다. dxdt = odefun(t,x) 여기서 odefun은 함수의 이름, t 는 시간, x 는 함수의 상태변수다. 함수에서 t 를 계산에 사용하지 않더라도 t 와 x 를 모두 입력값으로 받아야 한다. 그런데 만약 t 와 x 이외에 파라미터가 더 필요하다면 어떻게 해야 할까. 예를 들면, 다음과 같은 함수가 있다. \[ \begin{align} \dot{\mathbf{x}}(t) &= \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{v}_x \\ \dot{v}_y \end{bmatrix} = \mathbf{f}(\mathbf{x}(t)) \tag{1} \\ \\ &= \begin{bmatri.. 2023. 7. 9.
[CR3BP] 주기궤도 (Periodic Orbit)의 조건 라그랑지 포인트 L1, L2 및 L3에서 선형화 운동방정식의 해석 결과, 초기값을 잘 설정한다면 주기궤도(periodic orbit)가 형성될 수 있다는 것을 알았다 (https://pasus.tistory.com/273). 하지만 선형화 운동방정식은 라그랑지 포인트에서 가까운 영역에서만 유효하기 때문에 보다 넓은 범위에서도 주기궤도를 만들 수 있는지는 더 분석해 봐야 한다. 다시 CR3BP의 무차원화된 비선형 운동방정식으로 돌아가 보자. (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y}-x= - \frac{(1-\mu)(x+\mu)}{r_1^3 }- \frac{\mu (x+\mu-1)}{r_2^3} \tag{1} \\ \\ &.. 2023. 7. 4.