본문 바로가기

nlp4

[PSOC-10] 라다우 유사 스펙트럴 (RPM) 기반 최적제어 라다우 유사 스펙트럴 방법(RPM, Radau pseudospectral method)에서는 \(N\) 개의 LGR(Legendre-Gauss-Radau) 포인트를 콜로케이션 포인트로 사용하고, LGR 포인트에 \(\tau_{N+1}=1\) 점을 포함한 것을 보간점으로 사용한다. LGR 포인트는 \(N\) 차 르장드르(Legendre) 다항식과 \((N-1)\) 차 르장드르 다항식의 합인 \(P_N (\tau)+P_{N-1} (\tau)\) 의 해로 구성되어 있다. 라다우 유사 스펙트럴 방법에서는 상태변수 \(\mathbf{x}(\tau)\) 를 \( N \) 차 라그랑지 다항식으로 근사화한다. \[ \mathbf{x}( \tau ) \approx \mathbf{X} (\tau)= \sum_{i=1}^{.. 2023. 7. 18.
[PSOC-9] 로바토 유사 스펙트럴 (LPM) 기반 최적제어 로바토 유사 스펙트럴 방법(LPM, Lobatto pseudospectral method)에서는 콜로케이션 포인트와 보간점이 동일하다. \(N\) 개의 LGL(Legendre-Gauss-Lobatto) 포인트를 콜로케이션 포인트와 보간점으로 모두 사용한다. LGL 포인트는 \((N-1)\) 차 르장드르(Legendre) 미분 다항식 \(\dot{P}_{N-1} (\tau)\) 의 해와 \(\tau=-1, \ \tau=1\) 로 구성되어 있다. 로바토 유사 스펙트럴 방법에서는 상태변수 \(\mathbf{x}(\tau)\) 를 \((N-1)\)차 라그랑지 다항식으로 근사화한다. \[ \mathbf{x}( \tau ) \approx \mathbf{X} (\tau)= \sum_{i=1}^N \mathbf{X}_.. 2023. 7. 17.
[PSOC-8] 유사 스펙트럴 기반 최적제어 문제 연속시간 최적제어에 사용되는 두 가지 유형의 수치적 방법 중 직접방법(direct method)은 최적제어 문제에서 상태변수와 제어입력을 이산화(discretization)시켜 비선형 프로그래밍 문제(NLP, nonlinear programming problem)로 바꾸는 것이다. 유사 스펙트럴 방법(pseudospectral method)은 지난 10여년 동안 최적제어 분야에서 널리 사용된 직접방법 중의 하나로서 콜로케이션 포인트(collocation point)와 보간점(interpolating point)을 이용하는 것이 핵심이다. 지금까지 살펴본 수학적 배경지식인 라그랑지 보간 다항식, 가우시안 쿼드래처, 유사 스펙트럴 방법 등을 간략히 요약한 다음에 연속시간 최적제어 문제를 비선형 프로그래밍 문.. 2023. 7. 17.
[PSOC-1] 유사 스펙트럴 기반 최적제어 개요 대부분의 연속시간 최적제어 문제는 해석적으로 풀기가 매우 어렵기 때문에 수치적인 방법이 사용된다. 최적제어에 사용되는 두 가지 유형의 수치적 방법에는 간접방법(indirect method)과 직접방법(direct method)이 있다. 간접방법에서는, 우선 변분법(calculus of variation)을 사용하여 최적 필요조건을 유도한 후, 2점 경계값 문제(TPBVP, two-point boundary value problem) 또는 다중점 경계값 문제(MPBVP, multi-point boundary value problem)를 푼다. 이 방법의 주요 장점은 높은 정확도와 빠른 수렴이다. 그러나 몇 가지 단점이 있다. 첫째, 복잡한 제약 조건을 고려할 때, 필요한 조건에 대한 해석식을 도출하는 것이.. 2021. 12. 15.