본문 바로가기

ECI3

SCI 좌표계와 ECI 좌표계 뉴턴의 운동법칙을 적용하기 위해서는 관성좌표계가 필요하다. 태양계 내에서 태양 주위를 공전하는 행성이나 혜성, 그리고 행성간 우주 탐사선 등의 운동에는 '태양중심 관성좌표계'를 사용하고, 지구 주위를 공전하는 인공위성의 운동에는 '지구중심 관성좌표계'를 사용하는 것이 편리하다. 태양도 은하계 중심을 기준으로 공전하고, 지구 역시 태양 중심을 기준으로 공전하기 때문에 엄밀한 의미에서 두 좌표계는 관성좌표계가 아니지만, 해당 운동 영역에서는 관성좌표계로 간주해도 정확도면에서 충분하기 때문이다. 지구가 태양주위를 공전하면서 만드는 평면을 황도면 (또는 공전궤도면)이라고 한다. 지구의 적도면은 이 황도면을 기준으로 \(23.4\) 도 기울어져 있다. 적도면과 황도면이 만나는 선을 춘분선(vernal equino.. 2021. 12. 30.
ECEF 좌표계에서 미사일 운동 방정식 유도 지구 중심에서 미사일의 위치까지의 위치 벡터를 \(\vec{r}\) 이라고 하고 미사일을 질량 \(m\) 인 질점이라고 가정하면, 뉴턴의 운동법칙에 의해서 미사일 운동 방정식은 다음과 같이 주어진다. \[ \frac{^id}{dt} \left( m \frac{^id\vec{r}}{dt} \right) = \vec{L}+\vec{D}+m \vec{g} \tag{1} \] 여기서 \(\vec{L}\) 은 양력, \(\vec{D}\) 는 항력, \(\vec{g}\) 는 중력가속도다. 식 (1)에서 중요한 점은 질량 \(m\) 이 상수가 아니라 시간의 함수라는 것이다. 그럼에도 불구하고 식 (1)을 아래 식과 같이 미분하면 안된다. \[ \frac{^id}{dt} \left( m \frac{^id \vec{r}.. 2021. 12. 21.
미사일 좌표계의 정의 미사일 운동 방정식을 세우기 위해서는 상황에 따라 다음과 같이 여러 개의 좌표계가 필요하다. (1) ECI (earth-centered inertial)와 ECEF (earth-centered earth-fixed) 좌표계: ECI 좌표계 \(\{i\}\) 와 ECEF 좌표계 \(\{e\}\) 좌표계는 다음 그림과 같이 정의한다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \[ ^i \vec{\omega}^e = \omega_{ie} \hat{e}_3 \tag{1} \] 이며 지구자전 각속도 \(\omega_{ie}\) 는 약 \(360^0/day\) 로서 WGS-84(World Geodetic System 1984)의 국제 표준값은 \(\omega_{ie} = 7.291151467 \time.. 2021. 12. 20.