본문 바로가기

라그랑지 포인트6

[CR3BP] 헤일로 궤도 (Halo Orbit) 계산 헤일로 궤도(halo orbit)는 라그랑지 포인트 L1, L2, L3 포인트를 중심으로 형성되는 3차원 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 헤일로 궤도는 (x-z) 평면에 대해 대칭이고, (x-z) 평면을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0 ) \\ y(t_0 ) \\ z(t_0 ) \\ \dot{x}(t_0 ) \\ \dot{y}(t_0 ) \\ \dot{z}(t_0 ) \end{bmatrix}= \begin{bmatr.. 2023. 7. 14.
[CR3BP] 리야프노프 궤도 (Lyapunov Orbit) 계산 리야프노프 궤도(Lyapunov orbit)는 (x-y) 평면에서 라그랑지 포인트 L1, L2, L3를 중심으로 공전하는 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 리야프노프 궤도는 x축에 대해 대칭이고, x축을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0) \\ y(t_0) \\ \dot{x}(t_0) \\ \dot{y}(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \\ 0 \\ v_{y0} \end.. 2023. 7. 11.
[CR3BP] 주기궤도 (Periodic Orbit)의 조건 라그랑지 포인트 L1, L2 및 L3에서 선형화 운동방정식의 해석 결과, 초기값을 잘 설정한다면 주기궤도(periodic orbit)가 형성될 수 있다는 것을 알았다 (https://pasus.tistory.com/273). 하지만 선형화 운동방정식은 라그랑지 포인트에서 가까운 영역에서만 유효하기 때문에 보다 넓은 범위에서도 주기궤도를 만들 수 있는지는 더 분석해 봐야 한다. 다시 CR3BP의 무차원화된 비선형 운동방정식으로 돌아가 보자. (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y}-x= - \frac{(1-\mu)(x+\mu)}{r_1^3 }- \frac{\mu (x+\mu-1)}{r_2^3} \tag{1} \\ \\ &.. 2023. 7. 4.
[CR3BP] 리야프노프 궤도, 헤일로 궤도, 그리고 리사주 궤도 라그랑지 포인트 L1, L2 및 L3에서의 선형화 운동방정식은 다음과 같았다 (https://pasus.tistory.com/272). \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y}-(1+2c_2 ) \delta x=0 \tag{1} \\ \\ & \delta \ddot{y}+2 \delta \dot{x}+(-1+c_2 ) \delta y=0 \\ \\ & \delta \ddot{z}+c_2 \delta z=0 \end{align} \] 여기서 \[ c_2= \frac{(1-\mu)}{|x_0+\mu|^3 }+ \frac{\mu}{ |x_0+\mu-1|^3 } \tag{2} \] 이다. 식 (1)에서 \(\delta x, \ \delta y\) 운동을 벡터 .. 2023. 6. 27.
[CR3BP] 라그랑지 포인트 안정성 해석 CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y} = -\bar{U}_x \tag{1} \\ \\ & \ddot{y}+2 \dot{x} = -\bar{U}_y \\ \\ & \ddot{z} = -\bar{U}_z \end{align} \] 여기서 \[ \begin{align} & U_{eff}= -\frac{1}{2} (x^2+y^2 ) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{1}{2} \mu (1-\mu) \\ \\ & r_1= \sqrt{(x+\mu)^2+y^2+z^2 } \\ \\ & r_2= \sqrt{(x+\mu-1)^2+y^2.. 2023. 6. 22.
[CR3BP] 라그랑지 포인트 (Lagrange Point) CR3BP의 무차원화된 운동방정식은 다음과 같았다. \[ \begin{align} & \ddot{x}-2 \dot{y} - x = - \frac{ (1-\mu)(x+\mu) }{r_{13}^3 } - \frac{ \mu (x+\mu-1) }{ r_{23}^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x} - y = - \frac{ (1-\mu) y }{r_{13}^3 } - \frac{ \mu y }{ r_{23}^3 } \\ \\ & \ddot{z} = - \frac{ (1-\mu) z }{r_{13}^3 } - \frac{ \mu z }{ r_{23}^3 } \end{align} \] 여기서 \[ \begin{align} & r_{13}= \sqrt{ (x+\mu)^2+y^2+z^.. 2021. 4. 10.