본문 바로가기

shooting method3

섭동력을 받는 램버트 문제의 보정 해 램버트 문제의 해(https://pasus.tistory.com/316)는 두 위치 \(\mathbf{r}_1\) 과 \(\mathbf{r}_2\) 사이를 비행하는 데 걸리는 시간 \(\Delta t\) 가 주어졌을 때, 두 위치를 연결하는 이체문제 (two-body problem) 궤적(trajectory)을 계산한다. 하지만 램버트 문제에서 고려하지 않았던 섭동력(perturbation)으로 인하여 궤적이 목표로 한 위치 \(\mathbf{r}_2\) 에 도달하지 못할 때는 어떻게 해야 할까. 일반적인 섭동력 (J2 섭동력, 태양복사압력, 항력, 달 또는 태양 등의 제3의 중력 등)의 경우 이러한 오차 거리(miss distance)가 크지 않기 때문에, 출발 위치 \(\mathbf{r}_1\) 에서.. 2024. 4. 12.
미분보정 (Differential Correction) 미분보정(differential correction)은 슈팅방법(shooting method)으로도 불린다. 기본적으로 미분방정식의 경계값 문제(boundary value problem)를 초기값 문제(initial value problem)로 바꾸어 해를 구하는 방법이다. 다음과 같은 비선형 미분방정식이 있다. \[ \dot{\mathbf{x}}(t)= \mathbf{f}(\mathbf{x}(t)) \tag{1} \] 여기서 초기값 \(\mathbf{x}(t_0 )\) 은 일부만 주어지거나 또는 주어지지 않았다고 가정한다. 대신 정해진 시간 \(t_f\) 에서 경계값 \(\mathbf{x}_d\) 가 주어졌다고 가정한다. 문제는 시간 \(t_f\) 에서 \(\mathbf{x}(t_f )=\mathbf{.. 2023. 7. 3.
기본 궤도 미분 방정식을 풀기 위한 조건 기본 궤도 미분 방정식을 다음과 같이 유도한 바 있다. \[ \frac{ ^id^2 \vec{r} }{ dt^2 } + \frac{ \mu }{ r^3 } \vec{r} = 0 \tag{1} \] 여기서 \(\mu =GM\)은 중력 파라미터, \(\vec{r}\)은 관성 좌표계 \(\{i\}\)의 원점에서 질점 \(m\)까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 위 식을 유도하는데 다음 3가지 가정을 전제로 했다. 먼저 질량 \(m\)은 질량 M에 비해서 무시할 수 있을 정도로 작다. 둘째, 질점 \(M\)은 말 그대로 질점이거나 또는 질점으로 간주할 수 있는 완전한 원구체이며 만유인력은 원구체의 중심을 향한다. 셋째, 질점 \(M\)과 \(m\)사이에 작용하는 힘은 만유인력 밖에 .. 2021. 1. 12.