본문 바로가기

cnn8

이미지 필터 설계해 보기 필터를 설계한다는 것은 곧 LSI 시스템의 임펄스 반응 \( h[m,n] \)을 결정하는 것과 같다. 그러면 입력 이미지가 \( x[m,n] \)일 때, 필터링된 출력 이미지 \( y[m,n] \)은 시스템의 임펄스 반응과 입력 이미지의 2D 컨볼루션으로 주어진다. \[ \begin{align} y[m,n] &= h[m,n]*x[m,n] \\ \\ &= \sum_{k =-\infty}^{\infty} \sum_{l =-\infty}^{\infty} x[k,l] h[m-k,n-l] \end{align} \] 간단히 3개의 이미지 필터를 설계해 보자. 먼저 이미지를 흐릿하게 만드는 스무딩(smoothing) 필터다. 스무딩 필터의 임펄스 반응은 다음과 같이 정할 수 있다. 임펄스 반응을 보면 스무딩 필터는 .. 2020. 7. 29.
2D 컨볼루션 독립변수가 1개인 함수로 표현되는 신호 \( x[n] \)을 1차원 신호(one-dimensional signal)라고 한다. 여기서 \( n \)은 인덱스로서 정수 값을 갖는다. 이 인덱스는 보통 시간스텝(time step)을 나타낸다. 1차원 신호와 관련된 컨볼루션을 1D 컨볼루션이라고 하거나 그냥 컨볼루션이라고 한다. 독립변수가 2개인 함수로 표현되는 신호 \( x[m,n] \)을 2차원 신호라고 한다. 2차원 신호에서 인덱스는 주로 공간상의 위치를 나타내는 배열 또는 순서를 뜻한다. 2차원 신호는 행렬로 나타내며 \( m \)은 행, \( n \)은 열을 나타낸다. 대표적인 2차원 신호로는 이미지(image) 신호가 있다. 2차원 신호와 관련된 컨볼루션을 2D 컨볼루션이라고 한다. 지금부터 LTI.. 2020. 7. 28.
이동평균(moving average) 필터 설계해 보기 필터를 설계한다는 것은 곧 LTI 시스템의 임펄스 반응 \( h[n] \)을 결정하는 것과 같다. 주식 차트를 보면 5일 이동평균선, 10일 이동평균선이라는 것이 있다. 5일 이동 평균은 현재부터 과거 5일전까지의 주가 평균을 계산한 것이다. 10일 이동 평균선도 마찬가지로 현재부터 과거 10일전까지의 주가를 평균 낸 것이다. 그러면 주식 차트의 이동평균선과 비슷하게, 입력 신호에 대한 5 포인트(point) 이동평균 필터와 10 포인트 이동평균 필터를 설계해 보자. 입력 신호를 \( x[n] \)으로 하고, 이동 평균 출력 신호를 \( y[n] \)으로 하면 5 포인트 이동평균 필터의 임펄스 반응은 다음과 같이 설계할 수 있다. \[ \begin{align} h[n] &= \frac{1}{5} ( \d.. 2020. 7. 26.
컨볼루션 쉽게 계산하기 일반적으로 많이 쓰이는 ‘뒤집기와 이동’ 방법을 사용하여 컨볼루션을 계산해 보자. 공식을 잘 살펴보면, \[ y[n] = \sum_{k=-\infty}^\infty h[n-k] x[k] \] 우선 \( x[n] \)과 \( h[n] \)을 \(x[k] \)와 \( h[k] \)로 바꿔야 한다는 것을 알 수 있다. 그리고, \( h[k] \)를 뒤집어서 \( h[-k] \)로 만든 후, \( n \)만큼 이동시켜서 \( h[n-k] \)를 만든 후, \( k \)에 대해서 \( x[k] \)와 \( h[n-k] \)를 곱한 다음, \( k \)에 대해서 \( h[n-k]x[k] \)를 모두 더하면 \( y[n] \)을 계산할 수 있다는 것을 알 수 있다. 그리고, 모든 \( n \)에 대해서 위 과정을 반.. 2020. 7. 25.
컨볼루션 공식대로 계산하기 신호처리 분야에서는 LTI 시스템을 필터(filter)라고 한다. LTI 시스템의 임펄스 반응은 시스템 그 자체라고 했으므로 필터를 설계한다는 것은 곧 LTI 시스템의 임펄스 반응 \( h[n] \)을 결정하는 것과 같다. LTI 시스템의 출력 \( y[n] \)은 시스템의 임펄스 반응 \( h[n] \)과 입력 \( x[n] \)의 컨볼루션으로 주어지므로, \[ \begin{align} y[n] &= h[n]*x[n] \\ \\ &=\sum_{k=-\infty}^\infty h[n-k] x[k] \end{align} \] 필터 또는 임펄스 반응은 어떤 입력에 대해서 원하는 출력이 나오도록 설계되어야 한다. 임펄스 반응 \( h[n] \)의 길이가 무한대이면 무한임펄스반응 (IIR, infinite im.. 2020. 7. 25.
TensorFlow2 Model Subclassing API로 CNN 구현해 보기 Sequential API와 Functional API에 이어서 이번에는 Model Subclassing API를 이용하여 CNN을 구현해 보자. Model Subclassing API는 자유도가 제일 높은 모델 구축 방법으로서 사용자 자신의 방법으로 신경망을 학습시킬 수도 있다. 딥러닝을 깊게 공부하려면 반드시 알아야 할 API다. MNIST 숫자 분류 대신에 Fashion_MNIST 데이터셋을 이용해 보기로 한다. MNIST는 손글씨였지만 Fashion_MNIST는 신발, 가방, 옷 등의 흑백 그림을 모아 놓은 데이터셋이다. 텐서플로2에서는 Fashion_MNIST 데이터셋도 쉽게 다운로드할 수 있다. fashion_mnist = tf.keras.datasets.fashion_mnist (x_trai.. 2020. 7. 23.
컨볼루션(convolution)이란 딥러닝의 성공은 컨볼루션 신경망(CNN, convolutional neural network)의 성공 덕분이라고 할 정도로 CNN은 딥러닝에서 중요한 위치를 차지하고 있다. CNN이 널리 알려지면서 컨볼루션은 딥러닝을 접해본 사람에게는 일반적 용어가 된 것 같다. 사실 컨볼루션이라는 용어는 딥러닝에 문외한이더라도 공업수학, 자동제어, 신호처리 등을 공부한 사람에게는 매우 익숙한 용어다. 이런 과목을 통해 컨볼루션을 접해본 사람에게는 CNN에서 이야기하는 컨볼루션 연산을 보면, “이건 컨볼루션이 아니라 상관도(correlation)인데...”라고 할 지도 모르겠다. CNN을 처음 공부하면 으레 나오는 설명이 있다. CNN은 완전연결(FC, fully connected) 신경망과 비교하여 차별성이 있는데, .. 2020. 7. 20.
TensorFlow2 Sequential API로 간단한 CNN 구현해 보기 TensorFlow2에서 제공하는 모델 구현 API는 크게 3가지 종류가 있다. 신경망 레이어를 순차적으로 쌓아 나가는 방식의 Sequential API, 레이어를 함수형태로 정의하는 Functional API, 그리고 클래스 형으로 모델을 만들 수 있는 Model Subclassing API다. Sequential API는 간단한 모델을 쉽게 구축할 수 있으며, 빈 깡통 모델을 만들어 놓고 순차적으로 레이어를 추가하거나 한꺼번에 순차적인 모델을 구축할 수 있다. Functional API는 복잡한 모델을 구축할 때 유리하며 ResNet과 같이 순차적이지 않은 모델도 구축할 수 있다. Model Subclassing API는 자유도가 제일 높은 모델 구축 방법으로서 사용자 자신의 방법으로 신경망을 만들고.. 2020. 7. 17.