본문 바로가기

Hessian4

뉴턴방법 (Newton’s Method) 경사하강법(gradient descent)이 어떤 함수의 최소값을 향한 방향을 계산하는데 1차 미분을 사용하는 반면 뉴턴방법(Newton's method)는 2차 미분을 사용한다. 따라서 뉴턴방법이 경사하강법보다는 성능이 훨씬 좋다. 제약조건이 없는 최적화 문제는 다음과 같다. \[ \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\) 는 목적함수(objective function)이다. 목적함수는 두 번 미분가능하다고 가정한다. 뉴턴방법의 기본 개념은 최적화 변수의 시작값(starting point) \(\mathbf{x}\) 에서 목적함수 \(f(\mathbf{.. 2022. 4. 8.
벡터 함수를 행렬로 미분하기 다변수 스칼라 함수를 벡터로 미분한 것을 그래디언트(gradient), 벡터 함수를 벡터로 미분한 것을 자코비안(Jacobian), 스칼라 함수를 벡터로 두 번 미분한 것을 헤시안(Hessian)이라고 한다. 이번에는 스칼라 함수를 행렬로 미분해 보자. \( X=\begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}\) 가 행렬이고 스칼라 함수 \(f(X)\)가 주어졌을 때 \(f(X)\)에 대한 \(X\)의 미분은 다음과 같이 정의한다. \[ \frac{d f}{d X} = \begin{bmatrix} \frac.. 2021. 3. 27.
최소화의 필요조건과 충분조건 다음과 같이 제약조건이 없는 일반적인 함수의 최적화 문제에서, \[ \min_\mathbf{x} f(\mathbf{x}) \] 함수 \(f(\mathbf{x})\)가 \( \mathbf{x}^\star\)에서 로컬(local) 최소값이 되기 위한 필요조건(necessary condition)은 \( \mathbf{x}=\mathbf{x}^\star\)에서 계산한 \(f\)의 그래디언트(gradient)가 \(0\)이 되는 것이다. \[ \nabla_\mathbf{x} f(\mathbf{x}^\star ) = 0 \] 위 조건을 \(\mathbf{x}^\star\)이 최소점이 되기 위한 1차(first order) 필요조건이라고 한다. 사실 위 조건은 로컬 최대점에서도 성립한다. 그럼 또 다른 필요조건이 .. 2021. 1. 10.
스칼라 함수를 벡터로 두번 미분하기 : 헤시안 스칼라 함수의 그래디언트는 벡터다. 그러면 그래디언트를 벡터에 대해 한번 더 미분한다면 행렬이 될 것이다. 이 행렬은 스칼라 함수를 벡터로 두 번 미분하여 얻어진 것으로 헤시안(Hessian)이라고 한다. 수식으로 알아보자. 벡터 \( {\bf x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix} ^T \)의 구성요소를 변수로 하는 다변수 스칼라 함수 \( f( {\bf x}) \)를 벡터 \( \bf x \)에 대해 미분하면 다음과 같이 된다. \[ \frac{d f}{d {\bf x} } = \begin{bmatrix} \frac{\partial f}{\partial x_1 } \\ \frac{\partial f}{\partial x_2 } \\ \vd.. 2020. 7. 17.