본문 바로가기
AI 딥러닝/강화학습

Tensorflow2로 만든 Double DQN 코드: CartPole-v1

by 세인트워터멜론 2021. 5. 11.

OpenAI Gym에서 제공하는 CartPole-v1 환경을 대상으로 Double DQN 알고리즘을 Tensorflow2 코드로 구현하였다.

 

 

학습결과는 다음과 같다.

 

 

다음은 학습이 끝난 후 카트폴의 움직임이다.

 

 

Double DQN 코드는 Q 신경망을 구현하고 학습시키기 위한 doubledqn_learn.py, 이를 실행시키기 위한 doubledqn_main.py, 학습을 마친 신경망 파라미터를 읽어와 에이전트를 구동하기 위한 doubledqn_load_play.py 그리고 리플레이 버퍼를 구현한 replaybuffer.py로 구성되어 있다.

전체 코드 구조는 다음과 같다.

 

 

다음은 Tensorflow 2 코드다.

 

doubledqn_learn.py

 

# Double DQN learn (tf2 subclassing API version)
# coded by St.Watermelon

import numpy as np
import matplotlib.pyplot as plt

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
import tensorflow as tf

from replaybuffer import ReplayBuffer


# Q network
class DoubleDQN(Model):

    def __init__(self, action_n):
        super(DoubleDQN, self).__init__()

        self.h1 = Dense(64, activation='relu')
        self.h2 = Dense(32, activation='relu')
        self.h3 = Dense(16, activation='relu')
        self.q = Dense(action_n, activation='linear')


    def call(self, x):
        x = self.h1(x)
        x = self.h2(x)
        x = self.h3(x)
        q = self.q(x)
        return q


class DoubleDQNagent(object):

    def __init__(self, env):

        ## hyperparameters
        self.GAMMA = 0.95
        self.BATCH_SIZE = 32
        self.BUFFER_SIZE = 20000
        self.DDQN_LEARNING_RATE = 0.001
        self.TAU = 0.001
        self.EPSILON = 1.0
        self.EPSILON_DECAY = 0.995
        self.EPSILON_MIN = 0.01

        self.env = env

        # get state dimension and action number
        self.state_dim = env.observation_space.shape[0]  # 4
        self.action_n = env.action_space.n   # 2

        ## create Q networks
        self.doubledqn = DoubleDQN(self.action_n)
        self.target_doubledqn = DoubleDQN(self.action_n)

        self.doubledqn.build(input_shape=(None, self.state_dim))
        self.target_doubledqn.build(input_shape=(None, self.state_dim))

        self.doubledqn.summary()

        # optimizer
        self.doubledqn_opt = Adam(self.DDQN_LEARNING_RATE)

        ## initialize replay buffer
        self.buffer = ReplayBuffer(self.BUFFER_SIZE)

        # save the results
        self.save_epi_reward = []


    ## get action
    def choose_action(self, state):
        if np.random.random() <= self.EPSILON:
            return self.env.action_space.sample()
        else:
            qs = self.doubledqn(tf.convert_to_tensor([state], dtype=tf.float32))
            return np.argmax(qs.numpy())


    ## transfer actor weights to target actor with a tau
    def update_target_network(self):
        phi = self.doubledqn.get_weights()
        target_phi = self.target_doubledqn.get_weights()
        for i in range(len(phi)):
            target_phi[i] = self.TAU * phi[i] + (1 - self.TAU) * target_phi[i]
        target_phi = phi
        self.target_doubledqn.set_weights(target_phi)


    ## single gradient update on a single batch data
    def doubledqn_learn(self, states, actions, td_targets):
        with tf.GradientTape() as tape:
            one_hot_actions = tf.one_hot(actions, self.action_n)
            q = self.doubledqn(states, training=True)
            q_values = tf.reduce_sum(one_hot_actions * q, axis=1, keepdims=True)
            loss = tf.keras.losses.MSE(td_targets, q_values)

        grads = tape.gradient(loss, self.doubledqn.trainable_variables)
        self.doubledqn_opt.apply_gradients(zip(grads, self.doubledqn.trainable_variables))


    ## computing TD target: y_k = r_k + gamma* max Q(s_k+1, a)
    def td_target(self, rewards, target_qs, max_a, dones):
        one_hot_max_a = tf.one_hot(max_a, self.action_n)
        max_q = tf.reduce_sum(one_hot_max_a * target_qs, axis=1, keepdims=True)
        y_k = np.zeros(max_q.shape)
        for i in range(max_q.shape[0]): # number of batch
            if dones[i]:
                y_k[i] = rewards[i]
            else:
                y_k[i] = rewards[i] + self.GAMMA * max_q[i]
        return y_k


    ## load actor weights
    def load_weights(self, path):
        self.doubledqn.load_weights(path + 'cartpole_ddqn.h5')


    ## train the agent
    def train(self, max_episode_num):

        # initial transfer model weights to target model network
        self.update_target_network()

        for ep in range(int(max_episode_num)):

            # reset episode
            time, episode_reward, done = 0, 0, False
            # reset the environment and observe the first state
            state = self.env.reset()

            while not done:
                # visualize the environment
                #self.env.render()
                # pick an action
                action = self.choose_action(state)
                # observe reward, new_state
                next_state, reward, done, _ = self.env.step(action)

                train_reward = reward + time*0.01


                # add transition to replay buffer
                self.buffer.add_buffer(state, action, train_reward, next_state, done)

                if self.buffer.buffer_count() > 1000:  # start train after buffer has some amounts

                    # decaying EPSILON
                    if self.EPSILON > self.EPSILON_MIN:
                        self.EPSILON *= self.EPSILON_DECAY

                    # sample transitions from replay buffer
                    states, actions, rewards, next_states, dones = self.buffer.sample_batch(self.BATCH_SIZE)

                    # compute max_a = argmax Q_phi(next_states, a)
                    curr_net_qs = self.doubledqn(tf.convert_to_tensor(next_states, dtype=tf.float32))
                    max_a = np.argmax(curr_net_qs.numpy(), axis=1)

                    # predict target Q-values
                    target_qs = self.target_doubledqn(tf.convert_to_tensor(
                                                        next_states, dtype=tf.float32))

                    # compute TD targets
                    y_i = self.td_target(rewards, target_qs.numpy(), max_a, dones)

                    # train critic using sampled batch
                    self.doubledqn_learn(tf.convert_to_tensor(states, dtype=tf.float32),
                                   actions,
                                   tf.convert_to_tensor(y_i, dtype=tf.float32))


                    # update target network
                    self.update_target_network()


                # update current state
                state = next_state
                episode_reward += reward
                time += 1


            ## display rewards every episode
            print('Episode: ', ep+1, 'Time: ', time, 'Reward: ', episode_reward)

            self.save_epi_reward.append(episode_reward)


            ## save weights every episode
            self.doubledqn.save_weights("./save_weights/cartpole_ddqn.h5")

        np.savetxt('./save_weights/cartpole_epi_reward.txt', self.save_epi_reward)

    ## save them to file if done
    def plot_result(self):
        plt.plot(self.save_epi_reward)
        plt.show()

 

 

 

doubledqn_main.py

 

# DoubleDQN main
# coded by St.Watermelon

from doubledqn_learn import DoubleDQNagent
import gym

def main():

    max_episode_num = 500
    env_name = 'CartPole-v1'
    env = gym.make(env_name)
    agent = DoubleDQNagent(env)

    agent.train(max_episode_num)

    agent.plot_result()

if __name__=="__main__":
    main()

 

doubledqn_load_play.py

 

# DoubleDQN load and play
# coded by St.Watermelon

import gym
import numpy as np
import tensorflow as tf
from doubledqn_learn import DoubleDQNagent

def main():

    env_name = 'CartPole-v1'
    env = gym.make(env_name)

    print(env.observation_space.shape[0])  # 4
    # get action dimension
    print(env.action_space, env.observation_space)

    agent = DoubleDQNagent(env)

    agent.load_weights('./save_weights/')

    time = 0
    state = env.reset()

    while True:
        env.render()

        qs = agent.doubledqn(tf.convert_to_tensor([state], dtype=tf.float32))
        action = np.argmax(qs.numpy())

        state, reward, done, _ = env.step(action)
        time += 1

        print('Time: ', time, 'Reward: ', reward)

        if done:
            break

    env.close()

if __name__=="__main__":
    main()

 

 

 

댓글0