본문 바로가기

rigid body5

라그랑지 방정식을 이용한 강체 운동방정식 유도 강체(rigid body)의 다양한 지점에 가해지는 모든 외력(external force)은 질량중심(center of mass)에 가해지는 총 외력으로 합산할 수 있고 질량중심은 마치 강체의 모든 질량이 그 중심에 집중되어 있는 질점(point mass)처럼 운동한다. 또한 외력은 강체의 다양한 지점에서 작용하기 때문에 질량중심에 대해서 모멘트를 만들고 이 모멘트는 질량중심에 대한 회전운동을 생성한다. 이와 같이 강체의 운동은 질량중심의 병진운동과 질량중심에 대한 회전운동으로 분리할 수 있다. 이제 강체 운동방정식을 라그랑지 방정식(Lagrange's Equation)을 이용하여 유도해 보도록 하겠다. 강체의 운동에너지도 질량중심의 병진 운동에너지와 질량중심에 대한 회전 운동에너지의 합으로 표현할 수 .. 2022. 2. 14.
강체의 운동방정식 - 4 지금까지 질량중심을 기준으로 강체(rigid body)의 운동방정식을 유도하였다. 이번에는 강체에 고정되어 있는 임의의 점 \(A\) 에 대해서 강체의 운동방정식을 유도해 보도록 하겠다. 임의의 점 \(A\) 에 대한 파티클 시스템(systems of particles)의 운동방정식은 다음과 같았다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j = m \frac{^i d^2 \vec{r}_G}{dt^2} = m \frac{^i d \vec{v}_G }{dt} \tag{1} \\ \\ & \frac{^i d \vec{H}_A}{dt} = m \frac{^i d \vec{r}_{G/A}}{dt} \times \vec{v}_G + \sum_{j=1}^n \vec{M}_{jA} \.. 2022. 2. 7.
강체의 운동방정식 - 3 지금까지 파티클 시스템(systems of particles)에 대해서 다음과 같은 운동방정식을 얻었다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j =m \frac{^id^2 \vec{r}_G }{dt^2}= m \frac{^id \vec{v}_G }{dt} \tag{1} \\ \\ & \sum_{j=1}^n \vec{M}_{jG} = \frac{^id \vec{H}_G }{dt} \tag{2} \\ \\ & \vec{H}_G= \sum_{j=1}^n \vec{r}_{j/G} \times m_j \frac{^id \vec{r}_j}{dt} \\ \\ & T= \frac{1}{2} m \vec{v}_G \cdot \vec{v}_G + \frac{1}{2} \sum_{j=1}.. 2022. 2. 6.
강체의 운동방정식 - 2 관성좌표계의 원점 \(O\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_O\) 를 다음과 같이 정의한 바 있다. \[ \vec{H}_O= \sum_{j=1}^n \vec{r}_j \times m_j \vec{v}_j \tag{1} \] 여기서 \(\vec{v}_j\) 는 파티클 \(j\) 의 속도로서 \(\vec{v}_j= \frac{^i d\vec{r}_j}{dt}\) 이다. 임의의 점 \(A\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_A\) 는 다음과 같이 정의한다. \[ \vec{H}_A = \sum_{j=1}^n \vec{r}_{j/A} \times m_j \vec{v}_j \tag{2} \] 여기서 \(\vec{r}_{j/A}\) 는 점 \(A\) 에서 파티클 \(j.. 2022. 2. 5.
강체의 운동방정식 - 1 고체(solid body)는 많은 수의 파티클 (또는 질점)로 구성되어 있는 파티클 시스템(systems of particles)이라고 볼 수 있다. 그 중에서 파티클 사이의 거리가 변하지 않는 시스템을 강체(rigid body)라고 한다. 파티클 사이의 거리가 시간에 따라서 변하는 시스템은 비강체 또는 유연체(탄성체 또는 비탄성체)라고 한다. 파티클 시스템에 적용되는 기본 원리도 강체에 적용되므로 강체의 운동 방정식을 유도하기 위해서 우선 파티클 시스템의 운동 방정식을 유도해 보기로 한다. 다음과 같이 \(n\) 개의 파티클로 구성된 시스템에서 파티클 \(j\) 에 작용하는 힘에는 외력(external force) \(\vec{F}_j\) 와 내력(internal force) \(\vec{f}_{jk}.. 2022. 2. 3.