본문 바로가기

항공우주/우주역학65

[CR3BP] 헤일로 궤도 (Halo Orbit) 계산 헤일로 궤도(halo orbit)는 라그랑지 포인트 L1, L2, L3 포인트를 중심으로 형성되는 3차원 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 헤일로 궤도는 (x-z) 평면에 대해 대칭이고, (x-z) 평면을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0 ) \\ y(t_0 ) \\ z(t_0 ) \\ \dot{x}(t_0 ) \\ \dot{y}(t_0 ) \\ \dot{z}(t_0 ) \end{bmatrix}= \begin{bmatr.. 2023. 7. 14.
[CR3BP] 리야프노프 궤도 (Lyapunov Orbit) 계산 리야프노프 궤도(Lyapunov orbit)는 (x-y) 평면에서 라그랑지 포인트 L1, L2, L3를 중심으로 공전하는 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 리야프노프 궤도는 x축에 대해 대칭이고, x축을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0) \\ y(t_0) \\ \dot{x}(t_0) \\ \dot{y}(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \\ 0 \\ v_{y0} \end.. 2023. 7. 11.
[CR3BP] 주기궤도 (Periodic Orbit)의 조건 라그랑지 포인트 L1, L2 및 L3에서 선형화 운동방정식의 해석 결과, 초기값을 잘 설정한다면 주기궤도(periodic orbit)가 형성될 수 있다는 것을 알았다 (https://pasus.tistory.com/273). 하지만 선형화 운동방정식은 라그랑지 포인트에서 가까운 영역에서만 유효하기 때문에 보다 넓은 범위에서도 주기궤도를 만들 수 있는지는 더 분석해 봐야 한다. 다시 CR3BP의 무차원화된 비선형 운동방정식으로 돌아가 보자. (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y}-x= - \frac{(1-\mu)(x+\mu)}{r_1^3 }- \frac{\mu (x+\mu-1)}{r_2^3} \tag{1} \\ \\ &.. 2023. 7. 4.
미분보정 (Differential Correction) 미분보정(differential correction)은 슈팅방법(shooting method)으로도 불린다. 기본적으로 미분방정식의 경계값 문제(boundary value problem)를 초기값 문제(initial value problem)로 바꾸어 해를 구하는 방법이다. 다음과 같은 비선형 미분방정식이 있다. \[ \dot{\mathbf{x}}(t)= \mathbf{f}(\mathbf{x}(t)) \tag{1} \] 여기서 초기값 \(\mathbf{x}(t_0 )\) 은 일부만 주어지거나 또는 주어지지 않았다고 가정한다. 대신 정해진 시간 \(t_f\) 에서 경계값 \(\mathbf{x}_d\) 가 주어졌다고 가정한다. 문제는 시간 \(t_f\) 에서 \(\mathbf{x}(t_f )=\mathbf{.. 2023. 7. 3.
[CR3BP] 리야프노프 궤도, 헤일로 궤도, 그리고 리사주 궤도 라그랑지 포인트 L1, L2 및 L3에서의 선형화 운동방정식은 다음과 같았다 (https://pasus.tistory.com/272). \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y}-(1+2c_2 ) \delta x=0 \tag{1} \\ \\ & \delta \ddot{y}+2 \delta \dot{x}+(-1+c_2 ) \delta y=0 \\ \\ & \delta \ddot{z}+c_2 \delta z=0 \end{align} \] 여기서 \[ c_2= \frac{(1-\mu)}{|x_0+\mu|^3 }+ \frac{\mu}{ |x_0+\mu-1|^3 } \tag{2} \] 이다. 식 (1)에서 \(\delta x, \ \delta y\) 운동을 벡터 .. 2023. 6. 27.
[CR3BP] L1, L2 및 L3 포인트에서의 궤도 운동 CR3BP의 선형화된 운동방정식을 이용하여 라그랑지 포인트(Lagrange point) L4 및 L5 포인트는 (중립) 안정 평형점이지만, L1, L2 및 L3 포인트는 불안정한 평형점이라는 것을 확인했다 (https://pasus.tistory.com/271). 하지만 L1, L2 및 L3 포인트의 고유값(eigenvalue) 분석에 의하면 평형점 주위에 주기 궤도(periodic orbit)가 존재함을 시사한다. 즉 특정한 초기조건을 설정하면 불안정한 운동 모드를 배제하고 주기 운동을 하는 모드만을 나타나게 할 수가 있다. 라그랑지 포인트에서의 선형화 운동방정식은 다음과 같다. \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y} = -\bar{U}_{xx} \.. 2023. 6. 25.
[CR3BP] 라그랑지 포인트 안정성 해석 CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y} = -\bar{U}_x \tag{1} \\ \\ & \ddot{y}+2 \dot{x} = -\bar{U}_y \\ \\ & \ddot{z} = -\bar{U}_z \end{align} \] 여기서 \[ \begin{align} & U_{eff}= -\frac{1}{2} (x^2+y^2 ) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{1}{2} \mu (1-\mu) \\ \\ & r_1= \sqrt{(x+\mu)^2+y^2+z^2 } \\ \\ & r_2= \sqrt{(x+\mu-1)^2+y^2.. 2023. 6. 22.
[CR3BP] 힐의 영역 (Hill’s Region) 원궤도 제한 삼체문제(CR3BP)는 질량중심을 중심으로 원궤도 운동을 하는 두 개의 기본 질점에 의해 생성된 중력장에서 제3의 질점의 운동을 기술한다. CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2\dot{y}- x= - \frac{(1-\mu)(x+\mu) }{r_1^3 }- \frac{\mu (x+\mu-1)}{ r_2^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x}-y= - \frac{(1-\mu)y}{r_1^3 }- \frac{\mu y}{ r_2^3 } \\ \\ & \ddot{z}=- \frac{(1-\mu )z}{r_1^3 }- \frac{\mu z}{ r.. 2023. 6. 19.
상대 궤도요소의 섭동 (Perturbed Relative Orbital Elements) Clohessy-Wiltshire(CW) 방정식을 \[ \begin{align} & \ddot{x}-3n^2 x-2n \dot{y}=f_1 \tag{1} \\ \\ & \ddot{y}+2n \dot{x}=f_2 \\ \\ & \ddot{z}+n^2 z=f_3 \end{align} \] 벡터 행렬식으로 표현하면 다음과 같다. \[ \begin{align} & \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} =\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 3n^2 & 0 .. 2023. 3. 6.
상대 궤도요소 (Relative Orbital Elements) - 2 chief 위성의 궤도가 원궤도 또는 근 원궤도(near-circular orbit)일 경우, 시간 \(t=t_0\) 에서 주어진 상대 궤도요소(ROM, relative orbital elements) \(\delta \kappa\) 를 이용하면 Hill 좌표계에서 상대 위치벡터 \(\delta \vec{r}=x\hat{o}_1+y\hat{o}_2+z\hat{o}_3\) 를 다음 식으로 표현할 수 있다 (https://pasus.tistory.com/240). \[ \begin{align} x & \approx a \delta a-a \lVert \delta \vec{e} \rVert_2 \cos (u-\varphi) \tag{1} \\ \\ y & \approx -\frac{3}{2} ua \delta.. 2023. 2. 7.