본문 바로가기

유도항법제어/유도항법12

두빈스 경로 (Dubins Path) - 2 RSL 경로는 시작점 \(\mathbf{p}_1\) 에서 오른쪽 원을 타고 우회전한 다음 직진하고 끝점 \(\mathbf{p}_2\) 에 도착할 때까지 왼쪽에 접한 원에서 다시 좌회전하는 것으로 구성된다. 아래 그림에는 원호에서 직선으로의 전환점인 풀아웃(pull-out) 지점 \(\mathbf{q}_1\) 과 직선에서 원호로 전환점인 휠오버(wheel-over) 지점 \(\mathbf{q}_2\) 와 이를 연결하는 직선을 각각 보여준다.    풀아웃 지점 \(\mathbf{q}_1\) 과 휠오버 지점 \(\mathbf{q}_2\) 는 다음과 같이 계산할 수 있다.  \[ \begin{align} \mathbf{q}_1 &= \mathbf{c}_1 + ( \mathbf{q}^\prime_1 - \math.. 2024. 5. 25.
두빈스 경로 (Dubins Path) - 1 평면상에서 시작점과 끝점을 연결하는 최단거리 경로를 구하려고 한다. 단 시작점과 끝점에서 각각 출발 방향과 도착 방향이 정해져 있고 경로가 가질 수 있는 최대 곡률(curvature)에 제한이 있는 경우다. 이 문제는 제약조건이 있는 최적화 문제로서 최단거리 경로는 최대 곡률을 갖는 원형 호와 직선을 결합하여 만들어진다는 것이 증명되었다. 이 최단거리 경로를 두빈스 경로 (Dubins path)라고 한다. 두빈스 경로는 기하학적인 방법으로 간단히 생성할 수 있기 때문에 이동 로봇, 드론, 무인 잠수정 등의 운동체 경로 계획 방법으로 널리 사용되고 있다. 두빈스 경로는 CSC 또는 CCC 경로 중 하나다. 여기서 C는 원호(circular arc), S는 직선(straight line)을 나타낸다. CCC.. 2024. 5. 25.
화성 착륙 과정과 진입 운동방정식 NASA가 지금까지 화성에 착륙시킨 착륙선은 1976년 바이킹 1호부터 시작하여 2021년 2월 18일에 착륙에 성공한 Mars2020/퍼서비어런스에 이르기까지 모두 9개다. 초창기에는 무유도(unguided) 탄도 대기권 진입 방식을 사용했는데, 이는 착륙 지점의 과학적 가치를 고려하지 않고 화성에 안전하게 착륙하는 것을 목표로 한 이른바 1세대 시스템이었다. 1세대 화성 진입, 하강 및 착륙(EDL, entry, descent and landing) 시스템의 착륙 오차(landing uncertainty ellipse)는 \(150 \times 20 ~ km\) 정도로서 위험한 지형과 과학적 가치가 높은 지역에 착륙할 수 있는 능력이 없었다.    2012년 8월 게일(Gale) 크레이터에 착륙한 M.. 2024. 4. 28.
[INS] 관성항법시스템 오차 방정식 (INS Error Equations) 관성항법시스템(INS)은 초기 위치, 속도 및 자세 정보와 가속도계 및 자이로스코프에서 얻어지는 측정 정보를 이용하여 현재의 위치, 속도 및 자세 정보를 제공하는 시스템이다. INS는 항법 좌표계에서 가속도를 적분하여 속도와 위치를 결정하는데, 가속도 신호는 동체 좌표계에서 측정되므로 이 값을 동체 좌표계에서 항법 좌표계로 변환해야 한다. 그런데 동체 좌표계와 항법 좌표계간에는 자세 변화가 있으므로 두 좌표계간의 자세각을 알아야 하고, 이를 위해서는 동체 좌표계에서 측정된 자이로스코프 신호를 적분해야 한다.    따라서 INS는 위치 결정을 위해서는 세 번의 수치적분, 속도 결정을 위해서는 두 번의 수치적분, 자세 결정을 위해서는 한 번의 수치적분이 수행되어야 한다. 이와 같은 수치적분 때문에 INS의 .. 2024. 3. 15.
[INS] 관성항법 방정식 (Kinematics of Inertial Navigation) 관성항법시스템 (INS, inertial navigation system)은 관성센서인 가속도계와 자이로스코프에서 측정된 가속도(specific force, 단위 질량당 힘)와 각속도를 이용하여 운동체의 위치, 속도, 자세를 추정하는 항법시스템의 한 종류다. 관성항법시스템은 단독으로 위치, 속도, 자세를 추정할 수 있기 때문에 외부 센서나 신호를 사용할 수 없거나 또는 신뢰할 수 없는 상황, 예를 들면 수중이나 지하에서 특히 유용하다. 관성항법의 구현 방식에는 운동체의 회전 운동과 기계적으로 분리된 짐벌(Gimbal)에 관성센서를 장착하는 짐벌 (Gimbaled INS) 방식과, 운동체에 관성센서를 직접 부착하는 스트랩다운 (Strapdown INS) 방식으로 나눌 수 있다. 최신 관성항법시스템은 대부분.. 2024. 3. 3.
최적유도법칙과 비례항법유도 (PNG) 최종 속도가 설정된 최적유도법칙(https://pasus.tistory.com/293)과 최종 속도가 설정되지 않은 최적유도법칙(https://pasus.tistory.com/294)을 '유도'해 보았다. 편의상 표적이 고정된 경우와 표적이 등속 운동을 하는 경우를 분리하여 각각의 최적유도법칙을 다시 써 보겠다. 먼저 표적이 정지 고정된 경우의 비행체의 운동방정식과 최적 유도법칙은 다음과 같다. \[ \begin{align} & \dot{\mathbf{r}}_m = \mathbf{v}_m \tag{1} \\ \\ & \dot{\mathbf{v}}_m= \mathbf{g}_m+ \mathbf{a}_m \\ \\ \\ & \mathbf{a}_{mV} (t)= \frac{6}{t_{go}^2 } \left( .. 2023. 9. 20.
최적유도법칙 (Optimal Guidance Law): 최종 속도 미설정 이전 포스트(https://pasus.tistory.com/293)와 유사한 문제를 풀어본다. 차이점은 최종 시간에서 속도벡터에 관한 제약조건이 없는 경우이다. 편의상 운동 방정식을 다시 쓴다. \[ \begin{align} & \dot{\mathbf{r}}= \mathbf{v} \tag{1} \\ \\ & \dot{\mathbf{v}}= \mathbf{g}(\mathbf{r})+\mathbf{a} \end{align} \] 여기서 \(\mathbf{r}\) 과 \(\mathbf{v}\) 는 각각 관성좌표계에 대한 위치벡터와 속도벡터를 나타낸다. \(\mathbf{a}\) 는 제어 가속도, \(\mathbf{g}(\mathbf{r})\) 은 비행체 또는 미사일에 작용하는 중력 가속도로서 위치의 함수이다... 2023. 9. 17.
최적 유도법칙 (Optimal Guidance Law): 최종 속도 설정 중력장에서 비행체 또는 미사일의 운동 방정식은 다음과 같이 주어진다. \[ \begin{align} \dot{\mathbf{r}} &= \mathbf{v} \tag{1} \\ \\ \dot{\mathbf{v}} &= -\frac{\mu}{r^3} \mathbf{r}+ \mathbf{a} \\ \\ &= \mathbf{g}( \mathbf{r})+ \mathbf{a} \end{align} \] 여기서 \(\mathbf{r}\) 과 \(\mathbf{v}\) 는 각각 관성좌표계에 대한 위치벡터와 속도벡터를 나타낸다. \(\mathbf{a}\) 는 제어 가속도, \(\mu\) 는 중력파라미터, \(\mathbf{g}(\mathbf{r})\) 은 비행체 또는 미사일에 작용하는 중력 가속도로서 위치의 함수이다. .. 2023. 9. 16.
비례항법유도 (Proportional Navigation Guidance) 1940년대에 경험적 유도법칙(guidance law)으로 시작된 이래 비례항법유도(PNG, proportional navigation guidance) 법칙은 현재 운용 중인 많은 전술 유도 미사일의 중기(midcourse) 및 종말단계(terminal phase)에서 가장 널리 사용되는 유도법칙일 뿐만 아니라 랑데부와 같은 우주임무의 유도 법칙으로도 사용되고 있다. 이와 같이 비례항법유도 법칙이 아직까지 각광을 받는 이유는 표적(target)에 관해 필요한 정보량이 적어서 온보드 센서요구 사항이 단순하므로 구현이 상대적으로 쉽고 신뢰성과 견고성이 뛰어나기 때문이다. PNG가 경험적 유도법칙으로 시작하였다지만 여기서는 논문 "Fundamentals of proportional navigation by .. 2023. 3. 11.
포텐셜 필드 방법 포텐셜 필드(potential field)의 아이디어는 목표점으로 이끄는(attractive) 인공적인 포텐셜 필드와 장애물로부터 멀어지게 내보내는(repulsive) 인공적인 포텐셜 필드를 형상공간에 구축하여, 로봇이나 비행체가 장애물을 피하면서 목표점에 다가갈 수 있는 운행 방향을 찾아보자는 것이다. 인력(attractive) 포텐셜은 로봇이나 비행체를 목표점으로 끄는 목적을 지니고 있으며 보통 파라볼릭(parabolic) 형태와 원추(conical) 형태, 그리고 이 둘을 결합한 형태를 사용하고 있다. 파라볼릭 형태의 포텐셜 필드는 다음 식으로 주어진다. \[ U_{att1} (\mathbf{q})= \frac{1}{2} k_a \left\vert \mathbf{q}_{goal} - \mathbf{.. 2021. 1. 29.