본문 바로가기

항공우주110

J2 섭동에 의한 궤도요소의 시간 변화율 - 2 J2 섭동에 의한 궤도요소의 시간 변화율을 다음과 같이 유도한 바 있다 (https://pasus.tistory.com/350). \[ \begin{align} \frac{da}{dt} & = 3J_2 \frac{a^2 \mu R_e^2 }{hr^4} \begin{bmatrix} e \sin \theta \ (3 \sin^2 i \sin^2 (\omega + \theta)-1) \\ -(1+e \cos \theta ) \sin^2 i \sin 2(\omega+ \theta) \end{bmatrix} \tag{1} \\ \\ \frac{de}{dt} &= \frac{3}{2} J_2 \frac{\mu R_e^2}{hr^3 } \begin{bmatrix} \frac{h^2}{\mu r} \sin \theta.. 2024. 9. 24.
J2 섭동에 의한 궤도요소의 시간 변화율 - 1 J2 섭동에 의한 궤도요소(orbital elements)의 시간 변화율은 라그랑지 행성 방정식(Lagrange planetary equation)이나 가우스 행성 방정식(Gauss planetary equation)을 이용하여 계산할 수 있다. 여기서는 가우스 행성 방정식을 이용해서 계산해 보도록 하겠다. 게시글 (https://pasus.tistory.com/346)에 있는 가우스 행성 방정식은 다음과 같았다.  \[ \begin{align} & \frac{da}{dt}= \frac{2a^2}{h} e \sin \theta \ a_r+ \frac{2a^2}{h} (1+e \cos \theta ) \ a_\theta \tag{1} \\ \\ & \frac{de}{dt}= \frac{h}{\mu} \si.. 2024. 9. 19.
J2 섭동 가속도 (J2 Perturbative Acceleration) 이체문제 하에서 지구를 단순하게 구형 대칭 질량체라고 가정하면 중력 포텐셜 함수(gravity potential function)는 \(V(r)=-\frac{\mu}{r}\) 이며 원추형 궤도를 생성한다. 하지만 지구는 구형 대칭 질량체가 아니고 적도 부분이 볼록하고 북극과 남극에서는 펀평한 타원구체 형태를 갖고 있으며 질량 분포 또한 불균일 하다. 이 경우 중력 포텐셜 함수는 구역 조화항(zonal harmonics), 부문 조화항(sectorial harmonics) 및 테세리얼 조화항(tesseral harmonics)을 포함한 복잡한 함수로 모델링할 수 있다 (https://pasus.tistory.com/348). 만약 지구의 모양과 질량 분포를 자전축을 중심으로 하는 축대칭으로 근사화한다면.. 2024. 9. 14.
중력 포텐셜 함수 (Gravity Potential Function) 이체문제(two-body problem)는 두 질점 사이에 작용하는 중력과 그에 따른 운동에 관한 문제다. 질량 분포가 구대칭인 구체(sphere)라면 모든 질량이 구체의 중심에 집중되어 있는 질점(point mass)처럼 작용하므로 이체문제의 가정에 부합한다. 하지만 대부분의 천체의 경우 기하학적 구조와 질량 분포는 불규칙하다. 지구도 모양이 구형이 아니라 타원체에 가깝고 밀도 또한 균일하지 않다. 이런 상황에서는 저궤도 위성의 경우 불균일한 중력의 영향 떄문에 궤도 섭동을 겪게 된다. 따라서 궤도의 장기적인 예측을 위해서는 지구를 단순하게 질점으로 가정하는 대신 중력 포텐셜 함수에 중력의 불균일한 요인을 추가하여 일정 수준의 정확도를 갖는 중력 모델을 개발할 필요가 있다. 다음 그림과 같이 임.. 2024. 9. 8.
가우스 변분 방정식 (Gauss Variational Equation) 라그랑지 행성 방정식은 섭동력이 보존력(conservative force)이어야 한다는 조건이 있었다. 하지만 섭동력이 보존력이 아닌 경우도 많다. 예를 들면 대기 항력, 제어 추력, 태양 복사 압력 등이다. 특히 섭동력이 제어 추력인 경우, 이 힘이 궤도요소에 어떤 영향을 미치는지를 직접적으로 이해하는 것은 제어기 설계에 있어서 매우 중요하다. 가우스 변분 방정식(Gauss variational equation)은 임의의 섭동력으로 인한 궤도요소의 시간 변화율을 힘의 관점에서 명시적으로 표현하기 때문에 섭동력이 비보존력인 경우에 특히 유용하다. 더구나 보존력인 경우에도 힘을 포텐셜 함수의 그래디언트로 표현할 수 있기 때문에 적용 가능하다. 라그랑지 행성 방정식을 유도할 때는 특별한 좌표계를 언급하지.. 2024. 9. 1.
라그랑지 행성 방정식 (Lagrange Planetary Equation) 이체문제는 우주에는 두 개의 질점만 존재하며, 중력이 두 질점 사이에 작용하는 유일한 힘이라는 가정을 기반으로 한다. 이체문제에서 이 힘을 제외한 모든 힘을 섭동력(perturbation force)이라고 한다. 두 질점 운동의 일반적인 섭동력에는 비구형 중심체, 대기 항력, 추진 추력, 태양 복사 압력, 제3의 질점에 의한 중력 등이 있다. 섭동력은 이체문제의 케플러 궤도에 교란을 가하여 정상적인 궤도에서 벗어나는 현상을 초래한다. 파라미터 변분법(VOP, variation of parameters)은 섭동력에 의해 교란된 동적 시스템의 풀이에 적합한 방법이다. 이 방법은 교란되지 않은 시스템 해(solution)의 상수(constant) 파라미터를 시변(time-varying) 파라미터로 일반화할.. 2024. 8. 28.
다중 슈팅방법 (Multiple Shooting Method) 예제 Ascher의 책 'Computer Methods for Ordinary Dierential Equations and Dierential-Algebraic Equations' 에 나와 있는 예제를 다중 슈팅방법(multiple shooting method)을 이용하여 풀어보고자 한다. 미분방정식은 다음과 같다.  \[ \begin{align} \dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 \lambda^3 & \lambda^2 & 2 \lambda \end{bmatrix} \mathbf{x}+ \begin{bmatrix} 0 \\ 0 \\ q(t) \end{bmatrix} \tag{1} \end{align} \]   여기서 \(\math.. 2024. 5. 14.
다중 슈팅방법 (Multiple Shooting Method) 다음과 같은 비선형 미분방정식이 있다.  \[ \begin{align} \dot{\mathbf{x}} (t) = \mathbf{f}(\mathbf{x}(t)) \tag{1} \end{align} \]   여기서 초기값 \(\mathbf{x}(t_0 )\) 는 일부만 주어지거나 또는 주어지지 않았다고 가정한다. 대신 최종 시간 \(t_f\) 에서 경계값 \(\mathbf{x}_f\) 가 주어졌다고 가정한다. 이와 같은 경계값 문제의 경우 초기값이 다 주어지지 않았으므로 시간 전파를 통해 수치적분을 수행할 수가 없다. 슈팅방법(shooting method)은 경계값 문제를 초기값 문제로 바꾸어 푼다 (https://pasus.tistory.com/276). 주어지지 않은 초기값을 적당히 추정한 다음에 수치적.. 2024. 5. 14.
섭동력을 받는 램버트 문제의 보정 해 램버트 문제의 해(https://pasus.tistory.com/316)는 두 위치 \(\mathbf{r}_1\) 과 \(\mathbf{r}_2\) 사이를 비행하는 데 걸리는 시간 \(\Delta t\) 가 주어졌을 때, 두 위치를 연결하는 이체문제 (two-body problem) 궤적(trajectory)을 계산한다. 하지만 램버트 문제에서 고려하지 않았던 섭동력(perturbation)으로 인하여 궤적이 목표로 한 위치 \(\mathbf{r}_2\) 에 도달하지 못할 때는 어떻게 해야 할까.    일반적인 섭동력 (J2 섭동력, 태양복사압력, 항력, 달 또는 태양 등의 제3의 중력 등)의 경우 이러한 오차 거리(miss distance)가 크지 않기 때문에, 출발 위치 \(\mathbf{r}_1\).. 2024. 4. 12.
오일러 운동방정식 (Euler’s Equation of Motion) 질량중심을 기준으로 한 강체의 운동방정식은 다음과 같았다 (https://pasus.tistory.com/191).  \[ \begin{align} \vec{M}_G &= \frac{ ^bd \vec{H}_G}{dt}+ \ ^i\vec{\omega} ^b \times \vec{H}_G \tag{1} \\ \\ &= \bar{I}_G \cdot \frac{ ^b d \ ^i\vec{\omega} ^b }{dt} + \ ^i\vec{\omega} ^b \times (\bar{I}_G \cdot \ ^i\vec{\omega} ^b ) \end{align} \]   여기서 \( ^i \vec{\omega} ^b\) 는 관성 좌표계 \(\{i\}\) 에 대한 강체 좌표계 \(\{b\}\) 의 각속도벡터, \(\b.. 2024. 3. 22.