전체 글354 [PSOC-7] 유사 스펙트럴 방법 예제 유사 스펙트럴(pseudospectral) 방법은 다음과 같이 경계조건을 갖는 미분방정식이 있을 때, \[ \begin{align} & \mathcal{D} \mathbf{x}(t)=\mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 방정식의 미지해 \(\mathbf{x}(t)\) 를 다음과 같은 형식을 갖는 \(\mathbf{X}(t)\) 로 근사적으로 구하는 방법이다. \[ \mathbf{x}(t) \approx \mathbf{X}(t)= \sum_{i=1}^N \mathbf{d}_i .. 2022. 4. 24. [PSOC-6] 유사 스펙트럴 방법 (Pseudospectral Method) 다음과 같이 경계조건을 갖는 미분방정식이 있다고 하자. \[ \begin{align} & \mathcal{D} \mathbf{x}(t)= \mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 여기서 \(\mathcal{D}\) 는 미분, \(\mathcal{B}\) 는 경계조건을 뜻하는 연산자이다. 위 미분방정식의 미지해 \(\mathbf{x}(t)\) 를 근사적으로 구한 해(approximate solution) \(\mathbf{X}(t)\) 를 다음과 같은 형식으로 구하고자 한다. \[.. 2022. 4. 23. 라인서치 (Line Search) 방법 제약조건이 없는 최적화 문제 \[ \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \] 는 보통 초기 추측값 \(\mathbf{x}^{(0)}\) 에서 시작하여 이터레이션(iteration)을 통하여 일련의 중간 단계의 해 \(\mathbf{x}^{(k)}\) 를 구하며 점진적으로 최적해에 접근하는 방법을 취한다. 이터레이션의 다음 단계의 해 \(\mathbf{x}^{(k+1)}\) 는 현 단계 해 \(\mathbf{x}^{(k)}\) 에서 일정 스텝(step) \(\Delta \mathbf{x}^{(k)}\) 으로 일정한 스텝사이즈 \(\eta^{(k)}\) 만큼 이동시켜 구하게 된다. \[ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \eta^{(k.. 2022. 4. 21. 프라이멀-듀얼 내부점 방법 (Primal-Dual Interior-Point Method) 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin{align} & \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A \mathbf{x}=\mathbf{b} \end{align} \] KKT(Karush-Kuhn-Tucker) 수정식은 다음과 같다. \[ \begin{align} & \nabla_{\mathbf{x}} f(\mathbf{x})+ \sum_{i=1}^m \mu_i \nabla_{\mathbf{x}} g_i (\mathbf{x.. 2022. 4. 15. 장벽 내부점 방법 (Barrier Interior-Point Method) 다음과 같은 등식과 부등식 제약조건이 있는 컨벡스(convex) 최적화 문제는 \[ \begin{align} & \min_{\mathbf{x}} \ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A\mathbf{x}=\mathbf{b} \end{align} \] KKT 수정식이나 지시함수(indicator function)를 이용하면 다음과 같이 등식 제약조건만을 갖는 컨벡스 최적화 문제로 근사화할 수 있다. \[ \begin{align} & \min_{\mathbf{x}} \ f(\mathb.. 2022. 4. 13. 등식 제약조건에서의 뉴턴방법 (Newton’s Method) 뉴턴방법(Newton's method)은 제약조건이 없는 최적화 문제에서 최적해를 이터레이션(iteration)으로 구하는 방법이었다. 하지만 뉴턴방법은 등식 제약조건을 갖는 최적화 문제로도 확장 적용될 수 있다. 등식 제약조건(equality constraints)을 갖는 컨벡스 최적화 문제(convex optimization problem)는 다음과 같다. \[ \begin{align} & \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ A\mathbf{x}=\mathbf{b} \end{align} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\.. 2022. 4. 10. 뉴턴방법 (Newton’s Method) 경사하강법(gradient descent)이 어떤 함수의 최소값을 향한 방향을 계산하는데 1차 미분을 사용하는 반면 뉴턴방법(Newton's method)는 2차 미분을 사용한다. 따라서 뉴턴방법이 경사하강법보다는 성능이 훨씬 좋다. 제약조건이 없는 최적화 문제는 다음과 같다. \[ \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\) 는 목적함수(objective function)이다. 목적함수는 두 번 미분가능하다고 가정한다. 뉴턴방법의 기본 개념은 최적화 변수의 시작값(starting point) \(\mathbf{x}\) 에서 목적함수 \(f(\mathbf{.. 2022. 4. 8. 내부점 방법 (Interior-Point Method)의 개념 다음 사진은 내부점 방법(interior-point method)에 대해서 1984년 11월 19일에 뉴욕 타임즈지에 실린 기사를 캡쳐한 것이다. 기사 제목은 'Breakthrough in Problem Solving'이다. 전문적인 수학 알고리즘에 대해서 과학 전문지도 아닌 일반 신문에 기사화되는 일은 매우 드문데, 그만큼 내부점 방법의 중요성을 말해주는 것 같다. 그럼 최적화 이론에서 혁명적인 방법으로 일컬어지는 내부점 방법에 대해서 알아보도록 하자. 내부점 방법은 기본적으로 KKT조건식의 해를 구하기 위한 방법이다. 하지만 KKT 조건식을 직접 푸는 대신 조금 수정한 식을 풀어서 점근적으로 최적해를 찾아가는 방법을 택했다. 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin.. 2022. 4. 6. 프라이멀 문제와 듀얼 문제의 유도 제약조건을 갖는 최적화 문제는 지시함수(indicator function)를 이용하면 제약조건이 없는 최적화 문제로 바꿀 수 있다. 지시함수는 어떤 집합에 어떤 값이 속하는지를 표시하는 함수로서 어떤 집합 \(\mathcal{X}\) 의 지시함수 \(I_{\mathcal{X}}\) 는 다음과 같이 정의된다. \[ I_{\mathcal{X}} (\mathbf{x}) = \begin{cases} 0, & \mbox{if } \mathbf{x} \in \mathcal{X} \\ \infty, & \mbox{if } \mathbf{x} \notin \mathcal{X} \end{cases} \tag{1} \] 다음과 같은 제약조건을 갖는 최적화 문제가 있을 때, \[ \begin{align} & \min_{\m.. 2022. 4. 4. 오일러의 회전 정리 (Euler’s Rotation Theorem) 오일러각 좌표변환 방법에서 알아본 회전축은 좌표계의 \(x\) 축, \(y\) 축, \(z\) 축이었다. 하지만 좌표계를 구성하는 좌표축만이 아니라 임의의 축, 즉 임의의 방향을 중심으로 좌표계를 회전시킬 수도 있다. 단위벡터는 크기가 \(1\) 인 벡터이기 때문에 방향을 표시하는데 자주 쓰인다. 여기서도 회전축 방향을 정하는데 단위벡터를 이용하기로 하고 기호로 \(\hat{p}\) 으로 표시하기로 한다. 좌표계 \(\{a\}\) 를 회전축 \(\hat{p}\) 축을 중심으로 \(\beta\) 만큼 회전시키면 새로운 좌표계로 변환되는데 이 좌표계를 \(\{b\}\) 라고 하자. 그러면 그림에서 보듯이 좌표계 \(\{a\}\) 의 좌표축과 회전축 사이의 각도는 좌표계 \(\{b\}\) 의 좌표축과 회전축 .. 2022. 3. 22. 라그랑지 방정식을 이용한 강체 운동방정식 유도 강체(rigid body)의 다양한 지점에 가해지는 모든 외력(external force)은 질량중심(center of mass)에 가해지는 총 외력으로 합산할 수 있고 질량중심은 마치 강체의 모든 질량이 그 중심에 집중되어 있는 질점(point mass)처럼 운동한다. 또한 외력은 강체의 다양한 지점에서 작용하기 때문에 질량중심에 대해서 모멘트를 만들고 이 모멘트는 질량중심에 대한 회전운동을 생성한다. 이와 같이 강체의 운동은 질량중심의 병진운동과 질량중심에 대한 회전운동으로 분리할 수 있다. 이제 강체 운동방정식을 라그랑지 방정식(Lagrange's Equation)을 이용하여 유도해 보도록 하겠다. 강체의 운동에너지도 질량중심의 병진 운동에너지와 질량중심에 대한 회전 운동에너지의 합으로 표현할 수 .. 2022. 2. 14. 강체의 운동방정식 - 4 지금까지 질량중심을 기준으로 강체(rigid body)의 운동방정식을 유도하였다. 이번에는 강체에 고정되어 있는 임의의 점 \(A\) 에 대해서 강체의 운동방정식을 유도해 보도록 하겠다. 임의의 점 \(A\) 에 대한 파티클 시스템(systems of particles)의 운동방정식은 다음과 같았다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j = m \frac{^i d^2 \vec{r}_G}{dt^2} = m \frac{^i d \vec{v}_G }{dt} \tag{1} \\ \\ & \frac{^i d \vec{H}_A}{dt} = m \frac{^i d \vec{r}_{G/A}}{dt} \times \vec{v}_G + \sum_{j=1}^n \vec{M}_{jA} \.. 2022. 2. 7. 강체의 운동방정식 - 3 지금까지 파티클 시스템(systems of particles)에 대해서 다음과 같은 운동방정식을 얻었다. \[ \begin{align} & \sum_{j=1}^n \vec{F}_j =m \frac{^id^2 \vec{r}_G }{dt^2}= m \frac{^id \vec{v}_G }{dt} \tag{1} \\ \\ & \sum_{j=1}^n \vec{M}_{jG} = \frac{^id \vec{H}_G }{dt} \tag{2} \\ \\ & \vec{H}_G= \sum_{j=1}^n \vec{r}_{j/G} \times m_j \frac{^id \vec{r}_j}{dt} \\ \\ & T= \frac{1}{2} m \vec{v}_G \cdot \vec{v}_G + \frac{1}{2} \sum_{j=1}.. 2022. 2. 6. 강체의 운동방정식 - 2 관성좌표계의 원점 \(O\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_O\) 를 다음과 같이 정의한 바 있다. \[ \vec{H}_O= \sum_{j=1}^n \vec{r}_j \times m_j \vec{v}_j \tag{1} \] 여기서 \(\vec{v}_j\) 는 파티클 \(j\) 의 속도로서 \(\vec{v}_j= \frac{^i d\vec{r}_j}{dt}\) 이다. 임의의 점 \(A\) 에 대한 파티클 시스템의 총 각운동량 \(\vec{H}_A\) 는 다음과 같이 정의한다. \[ \vec{H}_A = \sum_{j=1}^n \vec{r}_{j/A} \times m_j \vec{v}_j \tag{2} \] 여기서 \(\vec{r}_{j/A}\) 는 점 \(A\) 에서 파티클 \(j.. 2022. 2. 5. 이전 1 ··· 9 10 11 12 13 14 15 ··· 26 다음