AI 딥러닝/DLA21 [YOLO] 다중 객체 추적 다중 객체 추적(Multi-Object Tracking, MOT)은 영상의 각 프레임에서 여러 객체를 지속적으로 식별하고, 시간에 따라 동일한 객체를 연결하는 작업이다. 객체 탐지(Object Detection)가 “어디에 무엇이 있는가”를 알려준다면, 객체 추적은 “그것이 어디로 움직이는가”를 알려준다. 자율주행차가 보행자를 추적하고, CCTV가 침입자를 따라가며, 스포츠 중계에서 선수들의 움직임을 분석하는 모든 곳에 다중 객체 추적 기술이 활용된다. 객체 추적에는 탐지 이상의 기술이 필요하다. 객체 탐지는 각 프레임에서 독립적으로 객체의 위치를 파악하면 되지만, 추적에서는 예컨대 프레임 1의 "객체 A"와 프레임 100의 "객체 A"가 동일한 객체임을 보장해야 한다. 이를 정체성 유지(ID Prese.. 2025. 7. 18. [YOLO] 욜로의 진화 컴퓨터 비전 분야에서 "YOLO"라는 이름만큼 강렬한 인상을 남긴 기술은 드물다. "You Only Look Once"의 줄임말인 YOLO는 2015년 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi가 발표한 ‘You Only Look Once: Unified, Real‑Time Object Detection’ 논문에서 시작됐다. 기존의 복잡하고 느린 객체 탐지 방식을 단숨에 뛰어넘으며 실시간 객체 탐지 기술의 패러다임을 완전히 바꿔놓았다. YOLO가 등장하기 전까지 객체 탐지는 주로 Two-stage 방식이 주류였다. 대표적인 예로 R-CNN 계열의 모델들은 먼저 이미지에서 관심 영역(Region of Interest)을 찾고, 그 다음 해당 영.. 2025. 7. 11. [PINN] PINN을 이용한 램버트 문제의 해 램버트 문제(https://pasus.tistory.com/316)를 풀기 위한 알고리즘은 여러가지가 제안되어 있지만 여기서는 물리 정보 신경망(PINN, physics-informed neural network)을 이용하여 이 문제를 풀어보고자 한다. 수치 데이터는 이전 게시글(https://pasus.tistory.com/297)에서 사용했던 것을 다시 사용한다. 먼저 램버트 문제의 운동 방정식은 다음과 같다. \[ \begin{align} \frac{d^2 \mathbf{r}}{dt^2 }+ \frac{\mu}{ \left( \sqrt{\mathbf{r} \cdot \mathbf{r}} \right)^3} \mathbf{r}=0 \tag{1} \end{align} \] 여기서 \(\mu\) 는.. 2024. 4. 10. [VAE] beta-VAE 앞서 살펴본 바와 같이(https://pasus.tistory.com/263) VAE의 손실함수는 복원손실 항과 정규화 손실 항으로 구성된다. 식 (1)의 VAE 손실함수에서 첫번째 항인 복원손실은 복원(reconstruction)된 데이터가 원본 데이터와 얼마나 유사한지를 나타내는 오차다. 원본 데이터의 확률분포에 따라서 원본 데이터와 복원된 데이터 간의 교차 엔트로피나 L2 놈(norm)을 사용하여 복원손실을 계산할 수 있다. 두번째 항인 정규화(regularization) 손실은 고차원 입력 데이터를 저차원 잠재변수 공간(latent space)으로 인코딩할 때 잠재변수의 확률분포가 사전에(prior) 규정한 확률분포 \(p(\mathbf{z})\) 와 얼마나 유사한지를 계산하는 KL발산(Kullb.. 2023. 5. 11. [VAE] 변이형 오토인코더(Variational Autoencoder) 생성모델(generative model)은 데이터를 생성해 낼 수 있는 모델을 말한다. 만약 데이터의 확률분포 \(-\) 데이터가 이산적일 경우는 확률질량함수(probability mass function), 연속적일 경우는 확률밀도함수(probability density function) \(-\) 를 알 수 있으면 샘플링을 통해서 본래 데이터와 같은 확률적 특성을 갖는 새로운 데이터를 임의로 생성할 수 있으므로, 생성모델의 목적은 데이터의 확률분포를 추정하는 것이라고 말할 수 있다. 예를 들면 데이터로서 얼굴 이미지 집합이 주어졌을 때, 그 이미지의 특성을 나타내는 확률밀도함수를 추정할 수 있다면, 새로운 얼굴 이미지를 임의로 생성할 수 있다는 말이다. 생성모델은 고차원(high dimension) .. 2023. 4. 30. [U-Net] 망막 혈관 세그멘테이션 (Retinal Vessel Segmentation) U-Net을 망막 혈관 세그멘테이션(retinal blood vessel segmentation) 문제에 적용해 보자. 아래 사이트에 가면 데이터셋과 관련 논문, 그리고 텐서플로나 파이토치로 작성한 코드들이 많이 나온다. Papers with Code - Retinal Vessel Segmentation Retinal vessel segmentation is the task of segmenting vessels in retina imagery. ( Image credit: [LadderNet](https://github.com/juntang-zhuang/LadderNet) ) paperswithcode.com 사이트에는 4가지 데이터셋이 나와 있는데, 이중 DRIVE (Digital Retinal Im.. 2022. 5. 11. [U-Net] U-Net 구조 이미지 세그멘테이션(image segmentation)은 이미지의 모든 픽셀이 어떤 카테고리(예를 들면 자동차, 사람, 도로 등)에 속하는지 분류하는 것을 말한다. 이미지 전체에 대해 단일 카테고리를 예측하는 이미지 분류(image classification)와는 달리, 이미지 세그멘테이션은 픽셀 단위의 분류를 수행하므로 일반적으로 더 어려운 문제로 인식되고 있다. 위 그림에서 semantic segmentation은 이미지 내에 있는 객체들을 의미 있는 단위로 분할해내는 것이고, instance segmentation 은 같은 카테고리에 속하는 서로 다른 객체까지 더 분할하여 semantic segmentation 범위를 확장한 것이다. 이미지 세그멘테이션은 의료 이미지 분석(종양 경계 추출 등), 자.. 2022. 5. 11. [PINN] 버거스 방정식 기반 신경망 (Burgers’ Equation-Informed Neural Network) 코드 업데이트 일전에 포스팅한 버거스 방정식(Burgers' equation)에 대한 물리정보신경망(PINN, Physics-Informed Neural Network) Tensorflow2 코드를 업데이트했다. 버거스 방정식과 초기조건, 경계조건, 그리고 신경망 구조, 콜로케이션 포인트, 데이터 포인트 등은 모두 전에 사용된 코드와 동일하다. https://pasus.tistory.com/162 차이점은 두가지다. 먼저 물리정보 신경망에서 \(u_t, u_x, u_{xx}\) 를 계산할 때 기존의 tf.GradientTape.gradient 대신에 tf.gradients 함수를 사용했다. 해당 코드는 다음과 같다. @tf.function을 사용해서 한결 간단해졌다. @tf.function def.. 2022. 1. 11. [PINN] 비압축성 유체 정보 기반 신경망 (Incompressible NS-Informed Neural Network) 전산역학 분야에서 큰 관심을 모으고 있는 물리 정보 신경망(PINN, physics-informed neural network)을 이용하여 비압축성 유체(incompressible fluid)의 흐름을 시뮬레이션 해보자. 시뮬레이션 하고자 하는 문제는 다음 그림에 나와 있다. 가로 세로 길이가 각각 \(L=1.0 m, H=0.4 m\) 인 직사각형 영역에 2차원 원형(circular) 실린더가 놓여 있다. 실린더는 유체의 흐름을 방해하는 장애물로서 반지름이 \(r=0.05 m\) 이고 중심점은 입구(inlet)로부터 \(0.2 m\), 하단 벽으로부터 위로 \(0.2 m\) 만큼 떨어진 곳에 위치한다. 유체의 점성계수는 \(\mu=0.02 kg/(m \cdot sec)\) 이고 밀도는 \(\r.. 2021. 11. 2. [PINN] 물리 정보 신경망 (Physics-Informed Neural Network) 유체(fluid)나 탄성체 또는 변형체의 운동 법칙을 표현하거나 또는 여러가지 공학적인 문제를 모델링하고 해석하는데 편미분 방정식(PDE, partial differential equation)이 사용된다. 예를 들면 유체 운동의 지배 방정식인 나비어-스톡스(Navier-Stokes) 방정식을 들 수 있겠다. 편미분 방정식은 특수한 경우를 제외하고는 해석적인 해를 구할 수 없기 때문에 수치적인 방법을 사용한다. 전통적인 수치 방법은 유한차분법(FDM), 유한요소법(FEM), 또는 유한체적법(FVM)등이 있다. 이 방법들은 기본적으로 메쉬(mesh)기반으로서 계산 영역을 수많은 작은 메쉬로 분할하고 각 메쉬 포인트에서 수치해를 얻는 것이다. 이와 같은 수치적 방법은 편미분 방정식의 연구를 크게 촉진했.. 2021. 9. 19. 이전 1 2 3 다음