본문 바로가기

optimization5

프라이멀-듀얼 내부점 방법 (Primal-Dual Interior-Point Method) 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin{align} & \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A \mathbf{x}=\mathbf{b} \end{align} \] KKT(Karush-Kuhn-Tucker) 수정식은 다음과 같다. \[ \begin{align} & \nabla_{\mathbf{x}} f(\mathbf{x})+ \sum_{i=1}^m \mu_i \nabla_{\mathbf{x}} g_i (\mathbf{x.. 2022. 4. 15.
[KKT 조건 - 1] 등식과 부등식 제약조건이 있는 최적화 문제 제약조건이 없는 일반적인 최적화 문제는 다음과 같다. \[ p^\star= \min_{\mathbf{x}}⁡ f(\mathbf{x}) \] 여기서 \(\mathbf{x}\)는 최적화 변수이고, \(f(\mathbf{x})\)는 목적함수(objective function)이다. \(\mathbf{x}^\star\)가 로컬(local) 최소점이 되기 위한 필요조건(necessary condition)은 \(\mathbf{x}=\mathbf{x}^\star\)에서 \(f\)의 그래디언트(gradient)가 \(0\)이 되는 것이다. \[ \nabla_{\mathbf{x}} f(\mathbf{x}^\star )=0 \] 등식 제약조건이 있는 일반적인 최적화 문제는 다음과 같다. \[ \begin{align} &.. 2021. 1. 14.
함수의 최소화 또는 최대화의 조건 다음과 같이 제약조건이 없는 일반적인 최적화 문제가 있다. \[ \min_{\mathbf{x}} f(\mathbf{x}) \ \ \ \ 또는 \ \ \ \ \max_{\mathbf{x}} f(\mathbf{x}) \] 여기서 \( \mathbf{x} \in R^n \)은 최적화 변수이고, \( f(\mathbf{x}) \)은 목적함수(objective function)이다. 이 목적함수를 최소화 또는 최대화하기 위한 조건은 무엇일까. \( \mathbf{x} \)의 독립적 변화에 의해 유도된 함수 \( f(\mathbf{x}) \)의 변화량을 계산해 보자. \( \mathbf{x} \)의 변화량을 \( \Delta \mathbf{x} \)라고 하면, 함수의 증분(increment) \( \Delta f .. 2020. 10. 20.
경사하강법 제약조건이 없는 일반적인 최적화 문제는 다음과 같다. \[ p^* = \min_{\mathbf{x}} f(\mathbf{x}) \] 또는, \[ \mathbf{x}^* = \arg \min_{\mathbf{x}} f(\mathbf{x}) \] 여기서 \( \mathbf{x} \in R^n \) 은 최적화 변수이고, \( f(\mathbf{x}) \)은 목적함수(objective function)이다. 대부분 신경망 학습 알고리즘은 손실함수(loss function)를 정하거나 최적화를 위한 목적함수를 만드는 것으로 시작한다. 경사하강법(gradient descent) 또는 경사상승법(gradient ascent)은 목적함수를 최소화(minimization)하거나 최대화(maximization)하기 위해 .. 2020. 9. 30.
최적화 문제의 분류 제약조건이 있는 비선형 다변수 함수 \( f(\mathbf{x}) \)의 최소값 (또는 최대값)을 구하는 문제를 정적 최적화(static optimization) 문제 또는 비선형 프로그래밍 문제(NLP, nonlinear programming problem)라고 한다. 수식으로 표현하면 다음과 같다. \[ \begin{align} & p^* = \min_{\mathbf{x}} f(\mathbf{x}) \\ \\ subject \ to \ \ \ & g_i (\mathbf{x}) \le 0, \ \ \ i=1,...,m \\ \\ & h_j (\mathbf{x}) = 0, \ \ \ j=1,...,p \end{align} \] 여기서 \( \mathbf{x} \in R^n \)을 최적화 변수(optimi.. 2020. 9. 30.