본문 바로가기

eigenvector6

진동 모드 해석 복소수는 실수부와 허수부를 갖는 수체계다. 실수부를 \(x\)축에, 허수부를 \(y\)축에 표시하면 복소수를 복소 평면상에 표시할 수 있다. 복소수는 보통 실수부와 허수부로 표현하지만 다음과 같이 크기와 위상각으로도 표현할 수 있다. \[ \begin{align} z &=x+jy \\ \\ &= r \cos \theta +j r \sin \theta \end{align} \] 여기서 \(r\)은 복소수의 크기, \(\theta\)는 위상각이며 각각 다음과 같이 계산할 수 있다. \[ r= \sqrt{x^2+y^2 }, \ \ \ \theta =\tan^{-1} \left( \frac{y}{x} \right) \] 오일러 공식(Euler formula)에 의하면 다음 식이 성립하므로, \[ e^{j \th.. 2021. 1. 26.
운동 모드 해석 고유값(eigenvalue)과 고유벡터(eigenvector)의 개념은 여러 분야에서 사용되고 있다. 운동 모드를 해석할 때도 사용되는데 이에 대해서 알아보자. 다음과 같이 상태변수의 미분 방정식으로 표현되는 운동 방정식이 있다고 하자. \[ \dot{\mathbf{x}}= A \mathbf{x} \tag{1} \] 여기서 \(\mathbf{x}(t)\)는 상태변수로서 성분이 \(n\)개인 벡터다. \(A\)는 성분이 모두 실수 값인 \(n \times n\) 행렬이다. 위 식은 \(n\)개의 스칼라 미분 방정식이 서로 연결된 연립 미분 방정식으로서 외부 입력이 작용하지 않는 다양한 선형 운동 방정식을 표현할 수 있는 범용 식이다. 식 (1)을 상태공간 방정식(state-space equation)이라고.. 2021. 1. 26.
특이값 분해(SVD)의 증명 어떤 \( m \times n \) 실수 행렬(real matrix) \( A \)와 그 전치 행렬 \( A^T \)의 행렬곱 \( AA^T \)와 \( A^T A \)는 대칭행렬이며 준정정 행렬(positive semi-definite matrix)이다. 먼저 대칭행렬인지 확인해 보자. 행렬곱을 전치한 다음에 원래 행렬과 같은 지 확인하면 된다. \[ (AA^T )^T=AA^T, \ \ \ (A^T A)^T=A^T A \] 그렇다면 \( AA^T \)이 준정정 행렬인지 확인해 보자. 어떤 벡터 \( \mathbf{x} \)에 대해서 다음 부등식을 만족하는지 확인하면 된다. \[ \begin{align} \mathbf{x} ^T (AA^T ) \mathbf{x} &= (A^T \mathbf{x} )^T .. 2020. 7. 23.
정정(positive-definite) 행렬의 고유값 실수 대칭행렬(real symmetric matrix)의 고유값(eigenvalue)과 고유벡터(eigenvector)는 모두 실수값이다. 또한 서로 다른 고유값에 해당하는 고유벡터는 서로 직각이다. 증명하기는 다소 어렵지만 실수 대칭행렬의 경우에는 서로 다른 고유값 뿐만 아니라 같은 고유값에 대응하는 고유벡터가 여러 개일 경우에도 그 고유벡터들은 서로 직각이다. 정정 행렬도 실수 대칭행렬이므로 고유값과 고유벡터는 실수값을 가지며, 고유벡터들은 서로 직각이다. 이에 덧붙여서 정정 행렬의 고유값은 모두 0보다 크다. 증명해 보자. 정정 행렬 \( A \)의 고유값을 \( \lambda \), 그에 대응하는 고유벡터를 \( \mathbf{v} \)라고 하면, \[ A \mathbf{v} = \lambda \.. 2020. 7. 21.
실수 대칭행렬의 고유값과 고유벡터 행렬의 성분이 모두 실수(real number)이고 대칭인 행렬을 실수 대칭행렬이라고 한다. 일반적인 행렬에서 고유값(eigenvalue)과 고유벡터(eigenvector)는 복소수 값을 가질 수 있다. 하지만 실수 대칭행렬의 고유값과 고유벡터는 모두 실수값이다. 또한 서로 다른 고유값에 해당하는 고유벡터는 서로 직각이다. 이를 증명해 보자. 먼저 \( n \times n \) 정방 행렬 \( A \)의 고유값과 고유벡터는 다음과 같이 정의된다. \[ A \mathbf{v}=\lambda \mathbf{v} \tag{1} \] 여기서 \( \lambda \)는 고유값, \( \mathbf{v} 는\) 그에 해당하는 고유벡터다. 켤레 복소수를 사용하면 위 식은 다음과 같이 쓸 수 있다. \[ \bar{A}.. 2020. 7. 18.
고유값과 고유벡터의 정의 행과 열의 갯수가 같은 행렬인 정방 행렬(square matrix)은 선형변환을 나타내는데 사용된다. 좌표변환은 벡터의 크기는 일정하게 유지하며 방향만 바꾸는 변환인데 비해, 선형변환은 벡터의 크기와 방향을 모두 바꾸는 일반적인 변환이다. 좌표변환 행렬로서 방향코사인행렬(DCM)이 있다. ( https://blog.naver.com/pasus/221858887468 ) 정방 행렬 \( A \)로 다음 식과 같이 벡터 \( \mathbf{v} \)를 다른 벡터 \( \mathbf{w} \)로 변환시킬 수 있다. \[ \mathbf{w}=A \mathbf{v} \] 만약 \( A \)가 다음과 같이 주어진다면, \[ A = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \].. 2020. 7. 17.