본문 바로가기

ai수학14

중요 샘플링 (Importance Sampling) 파이썬(Python)이나 매트랩(Matlab) 등 대부분의 컴퓨터 언어에는 가우시안 또는 균등분포(uniform distribution)로부터 샘플을 생성하는 함수를 가지고 있다. 샘플을 생성하고 싶은 확률밀도함수는 알고 있지만 샘플을 생성하기가 어려울 때는, 균등분포를 갖는 랜덤변수 \(X \sim U[0,1]\)로부터 해당 확률밀도함수를 갖는 랜덤변수 \(Y\) 사이의 함수 관계식 \(Y=g(X)\)을 구하고, 균등분포로부터 추출한 샘플 \(x^{(i)}\)를 함수 관계식 \(y^{(i)}=g(x^{(i)})\)로 변환해서 사용하면 된다. 그러나 이 방법은 랜덤변수가 다차원(multi-dimension)을 갖거나 복잡한 확률밀도함수를 갖는 경우에는 적용하기가 어렵다. 만약 샘플을 추출하여 기댓값(ex.. 2021. 1. 6.
혼합 랜덤변수 (Mixed Random Variables) 이산(discrete) 랜덤변수에서는 확률밀도함수(pdf, probability density function) 대신에 확률질량함수(pmf, probability mass function)를 사용한다. 이산 랜덤변수 \( \Theta \)의 확률질량함수 \( \omega_{\Theta} (\theta)\)는 다음과 같이 정의한다. \[ \omega_{\Theta} (\theta_i ) = P \{ \Theta = \theta _i \} \] 여기서 \( \theta_i, \ i=1, ... , n \)은 표본 공간의 모든 원소다. 정의에 의하면 확률질량함수는 곧 확률임을 알 수 있다. 디랙 델타(Dirac delta)함수 \(\delta (\theta) \)를 이용하면 확률질량함수를 확률밀도함수의 형태로.. 2020. 12. 27.
랜덤변수의 함수와 샘플링 - 3 랜덤변수 \(X\)의 확률밀도함수(pdf, probability density function)가 \(p_X (x)\)이고, 랜덤변수 \(Y\)가 함수 \(Y=g(X)\)로 주어졌을 때, \(Y\)의 확률밀도함수 \(p_Y (y)\)를 구할 수 있었다. 또한 랜덤변수 \(Y\)의 확률분포에서 샘플을 직접 추출하기 어려운 경우에는 가우시안 또는 균등분포(uniform distribution)를 갖는 랜덤변수 \(X\)로부터 샘플 \(X=x^{(i)}\)를 추출하여 함수 관계식 \(y^{(i)}=g(x^{(i)})\)로 변환해서 사용할 수 있었다. 그렇다면, 랜덤변수 \(X\)의 확률밀도함수 \(p_X (x)\)와 랜덤변수 \(Y\)의 확률밀도함수 \(p_Y (y)\)가 주어졌을 때, X와 Y의 함수 관계식.. 2020. 12. 26.
랜덤변수의 함수와 샘플링 - 2 랜덤변수(random variable) \(X\)의 확률밀도함수(pdf, probability density function) \(p_X (x) \)이고, 랜덤변수 \(Y\)가 미분가능한 함수 \(Y=g(X)\)로 주어졌을 때, \(Y\)의 확률밀도함수 \(p_Y (y)\)는 다음과 같이 주어진다. \[ p_Y (y) = \sum_{i=1}^k \frac{p_X (x_i)}{ \left| g^{\prime} (x_i) \right| } \] 여기서 \(x_1,x_2, ... \)는 함수 \(y=g(x)\)의 해이고 \(g^\prime (x_i)\)는 \(x_i\)에서 함수 \(g\)를 미분한 값이다. 증명은 복잡하므로 생략하기로 한다. 위 식을 이용하여 \(g\)가 선형함수 \(Y=aX+b,\ a \gt.. 2020. 12. 24.
랜덤변수의 함수와 샘플링 - 1 \(Y\)가 랜덤변수(random variable) \(X\)의 함수 \(Y=g(X)\)로 주어진다면 \(Y\)도 랜덤변수가 된다. \(X\)의 누적분포함수 \(F_X (x) \)와 확률밀도함수 \(p_X (x) \)로부터 \(F_Y (y) \)와 \(p_Y (y) \)를 구해보자. 사건 \( \{ Y \le y \} \)의 확률은 랜덤변수 \(X\)가 \( g(X) \le y \)를 만족하는 실수 구간 \( \{ X \in I_x \} \)에 속할 확률과 같으므로 \(Y\)의 누적분포함수는 다음 식으로 계산할 수 있다. \[ \begin{align} F_Y (y) & = P \{ Y \le y \} \\ \\ &= P \{ g(X) \le y \} \\ \\ &= P \{ X \le g^{-1} (y).. 2020. 12. 22.
반복적인 기댓값 계산 랜덤변수(random variable) \( X \)와 \( Y \)의 함수인 \( g(X,Y) \)의 기댓값 \( \mathbb{E}[g(X,Y)] \)는 다음과 같이 조건부 기댓값을 두 번 반복하여 계산해서 구할 수 있다. \[ \mathbb{E}[ g(X,Y)]=\mathbb{E}_Y \left[ \ \mathbb{E}_X [ g(X,Y)|Y ] \ \right] \] 여기서 \( \mathbb{E}_X [ \cdot ] \)는 기댓값을 확률밀도함수 \( p_{X|Y} (x|y) \)를 이용하여 계산한 것이고 \( \mathbb{E}_Y [ \cdot ] \)는 기댓값을 \( p_Y (y) \)를 이용하여 계산한 것이다. 위 관계식을 증명해 보자. \[ \begin{align} \mathbb{E}_.. 2020. 12. 12.
[Discrete-Time] LQR과 피드백 제어 다음과 같은 선형 시스템에 대해서 \[ \mathbf{x}_{t+1}=F_t \mathbf{x}_t+G_t \mathbf{u}_t \] 성능지수가 다음과 같이 2차함수로 주어지는 \[ J_t = \frac{1}{2} \mathbf{x}_N^T S_N \mathbf{x}_N + \frac{1}{2} \sum_{t=i}^{N-1} \left( \mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R_t \mathbf{u}_t \right) \] LQR 문제의 해는 다음과 같다 (https://pasus.tistory.com/38). \[ \begin{align} & \mathbf{x}_{t+1}=F_t \mathbf{x}_t+G_t \mathbf{u}_t \tag{1-1} .. 2020. 10. 31.
[Discrete-Time] LQR 문제 비선형 시스템에 대해서 매우 일반적인 성능지수를 적용한 최적제어 문제에 대한 해를 유도해 보았다 (https://pasus.tistory.com/35). 그러나 이러한 셋팅으로는 명시적인 제어법칙(control law)을 유도해 내기가 어렵다. LQR은 선형 시스템에 대해서 2차 함수로 주어진 성능지수를 이용한 최적제어 문제에서 도출되었으며 명시적인 제어법칙을 가지고 있는 제어기이다. LQR은 linear quadratic regulator의 약자로서 시스템이 선형(linear)이며 성능지수가 2차함수(quadratic)라는 의미이다. regulator는 시스템의 상태를 0 (또는 set point로 불리는 고정된 목표 상태변수)으로 만드는 제어기를 뜻한다. LQR은 PID 제어기와 함께 실제 응용 문제.. 2020. 10. 31.
라그랑지 곱수법 라그랑지 곱수(Lagrange multiplier)법은 등식 제약조건이 있는 최적화 문제를 풀기 위해 고안된 방법이다. 등식 제약조건이 있는 최적화 문제는 다음과 같다. \[ \begin{align} & p^* = \min_{\mathbf{x}} f( \mathbf{x} ) \\ \\ subject \ to \ \ \ & h_j ( \mathbf{x} ) = 0, \ \ \ j=1,...,p \end{align} \] 여기서 \( \mathbf{x} \in R^n \) 은 최적화 변수, \( f( \mathbf{x}):R^n \to R \) 은 목적함수, \( h_j (\mathbf{x}):R^n \to R \) 은 등식 제약함수이다. 라그랑지 곱수법에 의하면 등식 제약조건이 있는 최적화 문제를 제약조건.. 2020. 10. 1.
경사하강법 제약조건이 없는 일반적인 최적화 문제는 다음과 같다. \[ p^* = \min_{\mathbf{x}} f(\mathbf{x}) \] 또는, \[ \mathbf{x}^* = \arg \min_{\mathbf{x}} f(\mathbf{x}) \] 여기서 \( \mathbf{x} \in R^n \) 은 최적화 변수이고, \( f(\mathbf{x}) \)은 목적함수(objective function)이다. 대부분 신경망 학습 알고리즘은 손실함수(loss function)를 정하거나 최적화를 위한 목적함수를 만드는 것으로 시작한다. 경사하강법(gradient descent) 또는 경사상승법(gradient ascent)은 목적함수를 최소화(minimization)하거나 최대화(maximization)하기 위해 .. 2020. 9. 30.