본문 바로가기

Q-러닝3

DQN 알고리즘 - 2 DQN은 이산공간 상태변수에서만 작동하던 Q-러닝 알고리즘을 연속공간 상태변수로 확장시킨 것이었다. 일단 단순하게 Q-러닝을 바탕으로 만든 DQN 알고리즘은 다음과 같았다. [1] DQN의 파라미터를 초기화한다. 그리고 [2]-[4]를 반복한다. [2] 행동 \(\mathbf{a}_i\) 를 실행하여 천이샘플(transition sample) \(\{\mathbf{x}_i, \mathbf{a}_i, r_i, \mathbf{x}_{i+1}\}\) 를 모은다. [3] \(y_i= r(\mathbf{x}_i, \mathbf{a}_i )+ \gamma \max_{\mathbf{a}^\prime} Q_\phi (\mathbf{x}_{i+1}, \mathbf{a}^\prime )\) 를 계산한다. [4] \(\ph.. 2021. 5. 4.
DQN 알고리즘 - 1 Q-러닝 알고리즘은 이산공간 상태변수와 행동을 기본으로 하며, 유한 개의 상태변수와 행동에 대한 행동가치의 값을 테이블(Q-테이블이라고 한다) 형식으로 저장하고 관리한다. 적은 수의 상태변수와 행동의 경우에는 문제가 되지 않지만 많은 수의 상태변수와 행동의 경우에는 이와 같은 테이블 형식의 관리는 불가능할 수 있다. 예를 들어서 비디오 게임에 Q-러닝을 적용한다고 할 때, \(200 \times 200\) 픽셀 이미지, \(255\) 컬러, \(3\) 채널로 가정한다면 상태변수의 개수는 \((255^3 )^{200 \times 200}\) 개가 된다. 이 숫자는 전 우주에 있는 원자의 개수보다도 더 큰 숫자라고 한다. 이처럼 방대한 상태변수의 개수를 테이블 형태로 저장하고 관리한다는 것은 불가능한 일이다.. 2021. 5. 2.
가치 이터레이션에서 Q-러닝으로 정책 이터레이션은 벨만 방정식을 반복적으로 푸는 방법이었다. 정책 이터레이션의 식은 다음과 같다. \[\begin{align} & V_{j+1}^\pi (\mathbf{x}_t ) = r_t + \mathbb{E}_{ \mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) } \left[ \gamma V_j^\pi (\mathbf{x}_{t+1} ) \right] \tag{1} \\ \\ & Q_{j+1}^\pi (\mathbf{x}_t, \mathbf{u}_t ) = r_t + \mathbb{E}_{ \mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) } \.. 2021. 5. 1.