본문 바로가기

Newton’s method4

프라이멀-듀얼 내부점 방법 (Primal-Dual Interior-Point Method) 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin{align} & \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A \mathbf{x}=\mathbf{b} \end{align} \] KKT(Karush-Kuhn-Tucker) 수정식은 다음과 같다. \[ \begin{align} & \nabla_{\mathbf{x}} f(\mathbf{x})+ \sum_{i=1}^m \mu_i \nabla_{\mathbf{x}} g_i (\mathbf{x.. 2022. 4. 15.
장벽 내부점 방법 (Barrier Interior-Point Method) 다음과 같은 등식과 부등식 제약조건이 있는 컨벡스(convex) 최적화 문제는 \[ \begin{align} & \min_{\mathbf{x}}⁡ \ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A\mathbf{x}=\mathbf{b} \end{align} \] KKT 수정식이나 지시함수(indicator function)를 이용하면 다음과 같이 등식 제약조건만을 갖는 컨벡스 최적화 문제로 근사화할 수 있다. \[ \begin{align} & \min_{\mathbf{x}}⁡ \ f(\mathb.. 2022. 4. 13.
등식 제약조건에서의 뉴턴방법 (Newton’s Method) 뉴턴방법(Newton's method)은 제약조건이 없는 최적화 문제에서 최적해를 이터레이션(iteration)으로 구하는 방법이었다. 하지만 뉴턴방법은 등식 제약조건을 갖는 최적화 문제로도 확장 적용될 수 있다. 등식 제약조건(equality constraints)을 갖는 컨벡스 최적화 문제(convex optimization problem)는 다음과 같다. \[ \begin{align} & \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ A\mathbf{x}=\mathbf{b} \end{align} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\.. 2022. 4. 10.
뉴턴방법 (Newton’s Method) 경사하강법(gradient descent)이 어떤 함수의 최소값을 향한 방향을 계산하는데 1차 미분을 사용하는 반면 뉴턴방법(Newton's method)는 2차 미분을 사용한다. 따라서 뉴턴방법이 경사하강법보다는 성능이 훨씬 좋다. 제약조건이 없는 최적화 문제는 다음과 같다. \[ \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\) 는 목적함수(objective function)이다. 목적함수는 두 번 미분가능하다고 가정한다. 뉴턴방법의 기본 개념은 최적화 변수의 시작값(starting point) \(\mathbf{x}\) 에서 목적함수 \(f(\mathbf{.. 2022. 4. 8.