본문 바로가기

Lagrange multiplier4

[Continuous-Time] 최적제어 문제 최적제어(optimal control)문제는 여러 가지 물리적인 제약조건을 만족하면서 어떤 성능지표(performance index) 또는 목적함수(objective function)를 최적화하도록 동적 시스템(dynamic system)의 제어변수(control variable)을 결정하는 문제이다. 제약조건(constraints)은 동적 시스템의 동역학과 함께 시스템 제어변수 및 상태변수의 경로 제약조건(path constraints), 상태변수의 초기값(initial value) 및 최종값(final value)에 관한 제약조건(constraint on the initial and final states)을 모두 포함한다. 목적함수는 설계자가 의도한대로 시스템을 움직이면서 의도한 성능을 발휘할 수 .. 2022. 12. 13.
프라이멀 문제와 듀얼 문제의 유도 제약조건을 갖는 최적화 문제는 지시함수(indicator function)를 이용하면 제약조건이 없는 최적화 문제로 바꿀 수 있다. 지시함수는 어떤 집합에 어떤 값이 속하는지를 표시하는 함수로서 어떤 집합 \(\mathcal{X}\) 의 지시함수 \(I_{\mathcal{X}}\) 는 다음과 같이 정의된다. \[ I_{\mathcal{X}} (\mathbf{x}) = \begin{cases} 0, & \mbox{if } \mathbf{x} \in \mathcal{X} \\ \infty, & \mbox{if } \mathbf{x} \notin \mathcal{X} \end{cases} \tag{1} \] 다음과 같은 제약조건을 갖는 최적화 문제가 있을 때, \[ \begin{align} & \min_{\m.. 2022. 4. 4.
[Discrete-Time] 최적제어 문제 다음과 같이 이산시간(discrete-time) 차분 방정식(difference equation)으로 표현된 비선형 시스템이 있다. \[ \mathbf{x}_{t+1} = \mathbf{f}_t (\mathbf{x}_t, \mathbf{u}_t) \tag{1} \] 여기서 아래 첨자 \( t \)는 시간스텝을 나타낸다. 일반적으로 시스템을 시변(time-varying)으로 간주하기 때문에 함수 \( \mathbf{f}_t \)에 아래 첨자로 시간 표시를 한다. 시불변 시스템일 경우에는 생략하면 된다. 상태변수는 \( \mathbf{x}_t \in \mathbb{R}^n \), 제어변수는 \( \mathbf{u}_t \in \mathbb{R}^p \)이다. 최적제어 문제는 시스템이 어떤 스칼라 목적함수를 .. 2020. 10. 27.
라그랑지 곱수법 라그랑지 곱수(Lagrange multiplier)법은 등식 제약조건이 있는 최적화 문제를 풀기 위해 고안된 방법이다. 등식 제약조건이 있는 최적화 문제는 다음과 같다. \[ \begin{align} & p^* = \min_{\mathbf{x}} f( \mathbf{x} ) \\ \\ subject \ to \ \ \ & h_j ( \mathbf{x} ) = 0, \ \ \ j=1,...,p \end{align} \] 여기서 \( \mathbf{x} \in R^n \) 은 최적화 변수, \( f( \mathbf{x}):R^n \to R \) 은 목적함수, \( h_j (\mathbf{x}):R^n \to R \) 은 등식 제약함수이다. 라그랑지 곱수법에 의하면 등식 제약조건이 있는 최적화 문제를 제약조건.. 2020. 10. 1.