본문 바로가기

CR3BP13

[CR3BP] 주기궤도의 안정성 어떤 \(\bar{\mathbf{x}}(t)\) 가 다음 미분방정식의 해로 주어지는 주기(period)가 \(T\) 인 주기궤도라고 하자. \[ \dot{\bar{\mathbf{x}}}(t)= \mathbf{f}( \bar{\mathbf{x}} (t)) \tag{1} \] \(\bar{\mathbf{x}}(t)\) 에 약간의 섭동 \(\delta \mathbf{x}(t)\) 을 주고 식 (1)에 대입한 후 테일러 시리즈 1차 근사식을 구하면 다음과 같이 된다. \[ \begin{align} & \dot{\bar{\mathbf{x}}} (t)+ \delta \dot{\mathbf{x}}(t) \approx \mathbf{f}( \bar{\mathbf{x}}(t))+ \left. \frac{ \partial.. 2023. 7. 22.
[CR3BP] 헤일로 궤도 (Halo Orbit) 계산 헤일로 궤도(halo orbit)는 라그랑지 포인트 L1, L2, L3 포인트를 중심으로 형성되는 3차원 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 헤일로 궤도는 (x-z) 평면에 대해 대칭이고, (x-z) 평면을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0 ) \\ y(t_0 ) \\ z(t_0 ) \\ \dot{x}(t_0 ) \\ \dot{y}(t_0 ) \\ \dot{z}(t_0 ) \end{bmatrix}= \begin{bmatr.. 2023. 7. 14.
[CR3BP] 리야프노프 궤도 (Lyapunov Orbit) 계산 리야프노프 궤도(Lyapunov orbit)는 (x-y) 평면에서 라그랑지 포인트 L1, L2, L3를 중심으로 공전하는 주기궤도(periodic orbit)이다. 앞서 살펴본 주기궤도의 조건 (https://pasus.tistory.com/277)에 따라 리야프노프 궤도는 x축에 대해 대칭이고, x축을 직각으로 통과한다. 따라서 시간 \(t_0\) 의 초기조건과 주기 \(T\) 의 반인 시간 \(T/2\) 에서의 상태벡터는 다음과 같아야 한다. \[ \mathbf{x}(t_0 )= \begin{bmatrix} x(t_0) \\ y(t_0) \\ \dot{x}(t_0) \\ \dot{y}(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \\ 0 \\ v_{y0} \end.. 2023. 7. 11.
[CR3BP] 주기궤도 (Periodic Orbit)의 조건 라그랑지 포인트 L1, L2 및 L3에서 선형화 운동방정식의 해석 결과, 초기값을 잘 설정한다면 주기궤도(periodic orbit)가 형성될 수 있다는 것을 알았다 (https://pasus.tistory.com/273). 하지만 선형화 운동방정식은 라그랑지 포인트에서 가까운 영역에서만 유효하기 때문에 보다 넓은 범위에서도 주기궤도를 만들 수 있는지는 더 분석해 봐야 한다. 다시 CR3BP의 무차원화된 비선형 운동방정식으로 돌아가 보자. (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y}-x= - \frac{(1-\mu)(x+\mu)}{r_1^3 }- \frac{\mu (x+\mu-1)}{r_2^3} \tag{1} \\ \\ &.. 2023. 7. 4.
[CR3BP] 리야프노프 궤도, 헤일로 궤도, 그리고 리사주 궤도 라그랑지 포인트 L1, L2 및 L3에서의 선형화 운동방정식은 다음과 같았다 (https://pasus.tistory.com/272). \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y}-(1+2c_2 ) \delta x=0 \tag{1} \\ \\ & \delta \ddot{y}+2 \delta \dot{x}+(-1+c_2 ) \delta y=0 \\ \\ & \delta \ddot{z}+c_2 \delta z=0 \end{align} \] 여기서 \[ c_2= \frac{(1-\mu)}{|x_0+\mu|^3 }+ \frac{\mu}{ |x_0+\mu-1|^3 } \tag{2} \] 이다. 식 (1)에서 \(\delta x, \ \delta y\) 운동을 벡터 .. 2023. 6. 27.
[CR3BP] L1, L2 및 L3 포인트에서의 궤도 운동 CR3BP의 선형화된 운동방정식을 이용하여 라그랑지 포인트(Lagrange point) L4 및 L5 포인트는 (중립) 안정 평형점이지만, L1, L2 및 L3 포인트는 불안정한 평형점이라는 것을 확인했다 (https://pasus.tistory.com/271). 하지만 L1, L2 및 L3 포인트의 고유값(eigenvalue) 분석에 의하면 평형점 주위에 주기 궤도(periodic orbit)가 존재함을 시사한다. 즉 특정한 초기조건을 설정하면 불안정한 운동 모드를 배제하고 주기 운동을 하는 모드만을 나타나게 할 수가 있다. 라그랑지 포인트에서의 선형화 운동방정식은 다음과 같다. \[ \begin{align} & \delta \ddot{x}-2 \delta \dot{y} = -\bar{U}_{xx} \.. 2023. 6. 25.
[CR3BP] 라그랑지 포인트 안정성 해석 CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2 \dot{y} = -\bar{U}_x \tag{1} \\ \\ & \ddot{y}+2 \dot{x} = -\bar{U}_y \\ \\ & \ddot{z} = -\bar{U}_z \end{align} \] 여기서 \[ \begin{align} & U_{eff}= -\frac{1}{2} (x^2+y^2 ) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{1}{2} \mu (1-\mu) \\ \\ & r_1= \sqrt{(x+\mu)^2+y^2+z^2 } \\ \\ & r_2= \sqrt{(x+\mu-1)^2+y^2.. 2023. 6. 22.
[CR3BP] 힐의 영역 (Hill’s Region) 원궤도 제한 삼체문제(CR3BP)는 질량중심을 중심으로 원궤도 운동을 하는 두 개의 기본 질점에 의해 생성된 중력장에서 제3의 질점의 운동을 기술한다. CR3BP의 무차원화된 운동방정식은 다음과 같았다 (https://pasus.tistory.com/147). \[ \begin{align} & \ddot{x}-2\dot{y}- x= - \frac{(1-\mu)(x+\mu) }{r_1^3 }- \frac{\mu (x+\mu-1)}{ r_2^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x}-y= - \frac{(1-\mu)y}{r_1^3 }- \frac{\mu y}{ r_2^3 } \\ \\ & \ddot{z}=- \frac{(1-\mu )z}{r_1^3 }- \frac{\mu z}{ r.. 2023. 6. 19.
[CR3BP] 자코비 적분 (Jacobi Integral) CR3BP의 무차원화된 운동방정식은 다음과 같았다. \[ \begin{align} & \ddot{x}-2 \dot{y} - x = - \frac{ (1-\mu)(x+\mu) }{r_{13}^3 } - \frac{ \mu (x+\mu-1) }{ r_{23}^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x} - y = - \frac{ (1-\mu) y }{r_{13}^3 } - \frac{ \mu y }{ r_{23}^3 } \\ \\ & \ddot{z} = - \frac{ (1-\mu) z }{r_{13}^3 } - \frac{ \mu z }{ r_{23}^3 } \end{align} \] 여기서 \[ \begin{align} & r_{13}= \sqrt{ (x+\mu)^2+y^2+z^.. 2021. 6. 16.
[CR3BP] 라그랑지 포인트 (Lagrange Point) CR3BP의 무차원화된 운동방정식은 다음과 같았다. \[ \begin{align} & \ddot{x}-2 \dot{y} - x = - \frac{ (1-\mu)(x+\mu) }{r_{13}^3 } - \frac{ \mu (x+\mu-1) }{ r_{23}^3 } \tag{1} \\ \\ & \ddot{y}+2 \dot{x} - y = - \frac{ (1-\mu) y }{r_{13}^3 } - \frac{ \mu y }{ r_{23}^3 } \\ \\ & \ddot{z} = - \frac{ (1-\mu) z }{r_{13}^3 } - \frac{ \mu z }{ r_{23}^3 } \end{align} \] 여기서 \[ \begin{align} & r_{13}= \sqrt{ (x+\mu)^2+y^2+z^.. 2021. 4. 10.