본문 바로가기

정정행렬2

정정(positive-definite) 행렬의 고유값 실수 대칭행렬(real symmetric matrix)의 고유값(eigenvalue)과 고유벡터(eigenvector)는 모두 실수값이다. 또한 서로 다른 고유값에 해당하는 고유벡터는 서로 직각이다. 증명하기는 다소 어렵지만 실수 대칭행렬의 경우에는 서로 다른 고유값 뿐만 아니라 같은 고유값에 대응하는 고유벡터가 여러 개일 경우에도 그 고유벡터들은 서로 직각이다. 정정 행렬도 실수 대칭행렬이므로 고유값과 고유벡터는 실수값을 가지며, 고유벡터들은 서로 직각이다. 이에 덧붙여서 정정 행렬의 고유값은 모두 0보다 크다. 증명해 보자. 정정 행렬 \( A \)의 고유값을 \( \lambda \), 그에 대응하는 고유벡터를 \( \mathbf{v} \)라고 하면, \[ A \mathbf{v} = \lambda \.. 2020. 7. 21.
정정(positive-definite) 행렬이란 다음과 같은 행렬 부등식을 가끔 볼 수 있다. \[ A>0 \] 행렬 \( A \)가 0 보다 크다는 이야기인 것 같은데 ‘크다’ 또는 ‘작다’는 실수값에 대해서나 하는 이야기이지 어떻게 행렬에 대해서 말할 수 있을까. 혹시 행렬 \( A \)의 모든 성분이 0보다 크다는 것을 의미하는 것일까? 아니다. 위 식은 행렬 \( A \)가 정정 행렬(positive-definite matrix)이라는 것을 나타내는 기호이다. 부등호에 등호를 함께 쓴 다음 식은 행렬 \( A \)가 준정정 행렬(positive semi-definite matrix)이라는 것을 나타내는 기호이다. \[ A \ge 0 \] 그렇다면 정정 행렬이란 무엇인가. 성분이 모두 실수이고 대칭인 \( n \times n \) 정방(squar.. 2020. 7. 20.