본문 바로가기

손실함수2

정책 그래디언트 기반 강화학습의 원리 강화학습에서 에이전트(agent)가 최대화해야 할 누적 보상의 기댓값 또는 목적함수(또는 성능지수)는 다음과 같다. \[ J= \mathbb{E}_{\tau \sim p(\tau)} \left[ \sum_{t=0}^T \gamma^t r_t (\mathbf{x}_t, \mathbf{u}_t) \right] \] 여기서 \(\mathbf{x}_t \in \mathbb{R}^n\)은 환경의 상태변수, \(\mathbf{u}_t \in \mathbb{R}^m\)은 에이전트의 행동(action), \( \gamma \in [0,1]\)는 감가율이다. \(r_t\)는 시간스텝 \(t\)일 때 에이전트가 받는 순간 보상을 나타내는 보상함수다. \(\tau\)는 에이전트의 정책(policy)으로 생성되는 궤적 \(\.. 2021. 4. 13.
스칼라 함수를 벡터로 미분하기 : 그래디언트 대부분의 딥러닝 학습 알고리즘은 손실함수나 목적함수를 만드는 것으로 시작한다. 그리고 손실함수를 최소화하거나 목적함수를 최대화하기 위해 최적화 방법을 사용한다. 손실함수나 목적함수는 신경망 연결값을 변수로 갖는 스칼라 함수다. 이러한 연결값의 갯수는 신경망의 크기에 따라서 수 십 개에서 수 십억 개가 될 수도 있다. 따라서 손실함수나 목적함수는 다변수 스칼라 함수다. 손실함수나 목적함수를 최소화하거나 최대화할 때 필요한 것이 미분이다. 벡터 \( {\bf x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix} ^T \) 의 구성요소를 변수로 하는 다변수 스칼라 함수 \(f (x_1, x_2, …, x_n ) \) 을 간단히 \( f( {\bf x}) \) 로.. 2020. 7. 16.