본문 바로가기

분류 전체보기321

[U-Net] U-Net 구조 이미지 세그멘테이션(image segmentation)은 이미지의 모든 픽셀이 어떤 카테고리(예를 들면 자동차, 사람, 도로 등)에 속하는지 분류하는 것을 말한다. 이미지 전체에 대해 단일 카테고리를 예측하는 이미지 분류(image classification)와는 달리, 이미지 세그멘테이션은 픽셀 단위의 분류를 수행하므로 일반적으로 더 어려운 문제로 인식되고 있다. 위 그림에서 semantic segmentation은 이미지 내에 있는 객체들을 의미 있는 단위로 분할해내는 것이고, instance segmentation 은 같은 카테고리에 속하는 서로 다른 객체까지 더 분할하여 semantic segmentation 범위를 확장한 것이다. 이미지 세그멘테이션은 의료 이미지 분석(종양 경계 추출 등), 자.. 2022. 5. 11.
[PSOC-7] 유사 스펙트럴 방법 예제 유사 스펙트럴(pseudospectral) 방법은 다음과 같이 경계조건을 갖는 미분방정식이 있을 때, \[ \begin{align} & \mathcal{D} \mathbf{x}(t)=\mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 방정식의 미지해 \(\mathbf{x}(t)\) 를 다음과 같은 형식을 갖는 \(\mathbf{X}(t)\) 로 근사적으로 구하는 방법이다. \[ \mathbf{x}(t) \approx \mathbf{X}(t)= \sum_{i=1}^N \mathbf{d}_i .. 2022. 4. 24.
[PSOC-6] 유사 스펙트럴 방법 (Pseudospectral Method) 다음과 같이 경계조건을 갖는 미분방정식이 있다고 하자. \[ \begin{align} & \mathcal{D} \mathbf{x}(t)= \mathbf{g}(t), \ \ \ \mathbf{x} \in V \subset \mathbb{R}^n \tag{1} \\ \\ & \mathcal{B} \mathbf{x}(t)=0, \ \ \ \mathbf{x} \in \partial V \end{align} \] 여기서 \(\mathcal{D}\) 는 미분, \(\mathcal{B}\) 는 경계조건을 뜻하는 연산자이다. 위 미분방정식의 미지해 \(\mathbf{x}(t)\) 를 근사적으로 구한 해(approximate solution) \(\mathbf{X}(t)\) 를 다음과 같은 형식으로 구하고자 한다. \[.. 2022. 4. 23.
라인서치 (Line Search) 방법 제약조건이 없는 최적화 문제 \[ \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \] 는 보통 초기 추측값 \(\mathbf{x}^{(0)}\) 에서 시작하여 이터레이션(iteration)을 통하여 일련의 중간 단계의 해 \(\mathbf{x}^{(k)}\) 를 구하며 점진적으로 최적해에 접근하는 방법을 취한다. 이터레이션의 다음 단계의 해 \(\mathbf{x}^{(k+1)}\) 는 현 단계 해 \(\mathbf{x}^{(k)}\) 에서 일정 스텝(step) \(\Delta \mathbf{x}^{(k)}\) 으로 일정한 스텝사이즈 \(\eta^{(k)}\) 만큼 이동시켜 구하게 된다. \[ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \eta^{(k.. 2022. 4. 21.
프라이멀-듀얼 내부점 방법 (Primal-Dual Interior-Point Method) 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin{align} & \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A \mathbf{x}=\mathbf{b} \end{align} \] KKT(Karush-Kuhn-Tucker) 수정식은 다음과 같다. \[ \begin{align} & \nabla_{\mathbf{x}} f(\mathbf{x})+ \sum_{i=1}^m \mu_i \nabla_{\mathbf{x}} g_i (\mathbf{x.. 2022. 4. 15.
장벽 내부점 방법 (Barrier Interior-Point Method) 다음과 같은 등식과 부등식 제약조건이 있는 컨벡스(convex) 최적화 문제는 \[ \begin{align} & \min_{\mathbf{x}}⁡ \ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ g_i (\mathbf{x}) \le 0, \ \ i=1, ...,m \\ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A\mathbf{x}=\mathbf{b} \end{align} \] KKT 수정식이나 지시함수(indicator function)를 이용하면 다음과 같이 등식 제약조건만을 갖는 컨벡스 최적화 문제로 근사화할 수 있다. \[ \begin{align} & \min_{\mathbf{x}}⁡ \ f(\mathb.. 2022. 4. 13.
등식 제약조건에서의 뉴턴방법 (Newton’s Method) 뉴턴방법(Newton's method)은 제약조건이 없는 최적화 문제에서 최적해를 이터레이션(iteration)으로 구하는 방법이었다. 하지만 뉴턴방법은 등식 제약조건을 갖는 최적화 문제로도 확장 적용될 수 있다. 등식 제약조건(equality constraints)을 갖는 컨벡스 최적화 문제(convex optimization problem)는 다음과 같다. \[ \begin{align} & \min_{\mathbf{x}}⁡ f(\mathbf{x}) \tag{1} \\ \\ & \mbox{subject to : } \ \ A\mathbf{x}=\mathbf{b} \end{align} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\.. 2022. 4. 10.
뉴턴방법 (Newton’s Method) 경사하강법(gradient descent)이 어떤 함수의 최소값을 향한 방향을 계산하는데 1차 미분을 사용하는 반면 뉴턴방법(Newton's method)는 2차 미분을 사용한다. 따라서 뉴턴방법이 경사하강법보다는 성능이 훨씬 좋다. 제약조건이 없는 최적화 문제는 다음과 같다. \[ \min_{\mathbf{x}} f(\mathbf{x}) \tag{1} \] 여기서 \(\mathbf{x} \in \mathbb{R}^n\) 은 최적화 변수이고, \(f(\mathbf{x})\) 는 목적함수(objective function)이다. 목적함수는 두 번 미분가능하다고 가정한다. 뉴턴방법의 기본 개념은 최적화 변수의 시작값(starting point) \(\mathbf{x}\) 에서 목적함수 \(f(\mathbf{.. 2022. 4. 8.
내부점 방법 (Interior-Point Method)의 개념 다음 사진은 내부점 방법(interior-point method)에 대해서 1984년 11월 19일에 뉴욕 타임즈지에 실린 기사를 캡쳐한 것이다. 기사 제목은 'Breakthrough in Problem Solving'이다. 전문적인 수학 알고리즘에 대해서 과학 전문지도 아닌 일반 신문에 기사화되는 일은 매우 드문데, 그만큼 내부점 방법의 중요성을 말해주는 것 같다. 그럼 최적화 이론에서 혁명적인 방법으로 일컬어지는 내부점 방법에 대해서 알아보도록 하자. 내부점 방법은 기본적으로 KKT조건식의 해를 구하기 위한 방법이다. 하지만 KKT 조건식을 직접 푸는 대신 조금 수정한 식을 풀어서 점근적으로 최적해를 찾아가는 방법을 택했다. 제약조건이 있는 컨벡스(convex) 최적화 문제에 대해서 \[ \begin.. 2022. 4. 6.
프라이멀 문제와 듀얼 문제의 유도 제약조건을 갖는 최적화 문제는 지시함수(indicator function)를 이용하면 제약조건이 없는 최적화 문제로 바꿀 수 있다. 지시함수는 어떤 집합에 어떤 값이 속하는지를 표시하는 함수로서 어떤 집합 \(\mathcal{X}\) 의 지시함수 \(I_{\mathcal{X}}\) 는 다음과 같이 정의된다. \[ I_{\mathcal{X}} (\mathbf{x}) = \begin{cases} 0, & \mbox{if } \mathbf{x} \in \mathcal{X} \\ \infty, & \mbox{if } \mathbf{x} \notin \mathcal{X} \end{cases} \tag{1} \] 다음과 같은 제약조건을 갖는 최적화 문제가 있을 때, \[ \begin{align} & \min_{\m.. 2022. 4. 4.