본문 바로가기

유도항법제어/제어일반12

리야프노프 안정성 (Lyapunov stability) 이론 시불변 시스템 \(\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})\) 의 안정성에 대한 정의에 이어서 이번에는 시스템의 안정성을 판별할 수 있는 이론에 대해서 알아보겠다. 시스템이 선형 시불변이라면 시스템의 고윳값(eigenvalue)을 이용하여 쉽게 안정성을 판별할 수 있다. 시스템이 비선형일 경우에도 평형상태에 대해서 선형화를 한 후에 평형상태 근방에서 로컬 안정성을 판별할 수 있을 것이다. 이와 같은 안정성 판별 방법을 간접방법(indirect method)이라고 한다. 그러나 선형화를 사용하여 비선형 시스템의 로컬 안정성을 파악할 수 없는 상황이 있을 수 있다. 또한 선형화는 그 속성상 비선형 시스템의 전역(global) 안정성에 대해서는 알려줄 수가 없다. 물론 비선형.. 2022. 9. 30.
리야프노프 안정성 (Lyapunov stability) 개념 수학에서 자율 미분방정식(autonomous differential equation) 또는 자율 시스템은 명시적으로 독립변수의 함수가 아닌 미분방정식 또는 시스템을 말한다. 독립변수가 시간이라면 시불변(time-invariant) 시스템이라고도 한다. 독립변수가 시간인 비선형 비자율 미분방정식은 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)\) 로, 자율 시스템 또는 시불변 시스템은 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) 로 표기한다. 어떤 시불변 시스템 \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) 의 한 평형상태(equilibrium state)를 \(\mathbf{x}_e\) 라고 하자. 평형상.. 2022. 9. 27.
[Continuous-Time] LTI 시스템과 인과 시스템 LTI시스템의 출력은 다음과 같이 입력과 임펄스 반응의 컨볼루션으로 주어진다. \[ y(t)= \int_{-\infty}^{\infty} u(\tau) h(t-\tau) \ d\tau \] 여기서 \(h(t-\tau)\) 는 시간 \(\tau\) 에서 시스템에 임펄스를 입력으로 가했을 때 시간 \(t\) 에서의 출력이다. 그런데 여기서 \( t \lt \tau\) 일 때 \(h(t-\tau)\) 의 값이 \(0\) 이 아니라면 조금 이상한 일이 벌어진다. 임펄스를 입력으로 가하기 이전에 그 결과인 임펄스 반응이 시간적으로 먼저 나오는 것으로 해석되기 때문이다. 이것은 인과 법칙에 위배된다. 원인이 앞서고 결과가 뒤따르는게 순리적으로 맞기 때문이다. 원인이 결과에 앞서는 시스템을 인과(causal) 시스템.. 2022. 9. 13.
[Continuous-Time] LTI 시스템과 컨볼루션 입력과 출력의 관계식으로 표현하는 방법을 시스템의 외부적 표현 방법이라고도 하는데 다음과 같이 연산자(operator)를 이용하여 입출력 관계식을 함수로 나타낸다. \[ \mathbf{y}(t)= \mathcal{F} \{ \mathbf{u}(t), t\} \] 여기서 \(t\) 는 시간, \(\mathbf{u}(t)\) 는 입력, \(\mathbf{y}(t)\) 는 출력이다. 시불변 시스템의 경우 입력을 가한 싯점에 관계없이 출력이 동일해야 하므로 입출력 관계식은 다음과 같이 된다. \[ \mathbf{y}(t)= \mathcal{F} \{ \mathbf{u}(t) \} \] 한편 시불변이면서 동시에 선형인 경우에는 중첩의 원리가 적용되므로 시스템은 다음과 같은 특성을 가져야 한다. \[ \begin{.. 2022. 9. 13.
[Continuous-Time] LTI 시스템 선형 시스템에 이어서 이번에는 시불변(time-invariant) 시스템이 무엇인지 알아보자. 시불변 시스템은 초기값 \(\mathbf{x}(0 )\) 을 시간 \(\tau\) 만큼 늦추고 입력 \(\mathbf{u}(t)\) 도 \(\tau\) 만큼 늦춰서 똑같은 형태로 시스템에 인가했을 때, 출력 \( \mathbf{y}(t)\) 도 \(\tau\) 만큼 늦춰진 채 똑같은 형태로 나오는 시스템이다. 즉 시스템의 초기값과 입력의 시점 따라 시스템의 출력이 바뀌지 않는 시스템을 말한다. 예를 들어서 '어제' A라는 초기값과 패턴을 갖는 신호를 시스템에 입력으로 주었더니 B라는 출력 신호가 나왔다고 했을 때, '오늘' 동일한 A라는 초기값과 입력 신호를 시스템에 가했더니 어제와 동일한 B라는 출력 신호가 .. 2022. 9. 13.
주파수 응답 주파수 응답(frequency response)은 안정한 LTI(선형 시불변) 시스템에 싸인 또는 코사인 파형(sinusoids) 입력을 가했을 때 나오는 정정상태 응답(steady-state response)이다. 입력 \(u(t)\)가 시스템에 가해지는 시간이 \(t=-\infty\) 이라면 인과(causal) LTI 시스템의 출력은 다음과 같다. \[ y(t)= \int_{-\infty}^t h(t-\tau) u(\tau) \ d\tau \] 여기서 \(h(t)\)는 LTI 시스템의 임펄스 반응(impulse response)이다. 위 식에 의하면 시스템에 입력이 가해진 지 이미 무한대의 시간이 경과했으므로 시스템이 안정하다면, 시간 \(t\)에서의 반응은 이미 정정상태에 도달했다고 볼 수 있다. .. 2021. 2. 5.
정정상태 응답과 과도 응답 영어로 steady-state response를 정정상태 응답, transient response를 과도 응답이라고 번역한다. 정정상태는 시스템의 출력이 안정되어서 시간이 흘러도 같은 값을 유지하거나 같은 패턴의 출력이 나오는 상태를 말한다. 과도 응답이란 출력이 \(0\)부터 시작하여 정정상태 응답으로 가는 동안의 과도기 응답을 말한다. 영어를 한자로 번역하고 표기는 한글로만 하기 때문에 오해하기 쉬운 용어가 됐다. 정정 행렬이라는 용어도 있는데 이 때 '정정' 은 영어로 positive-definite이다. '양의 값으로 규정된' 이라는 뜻이다. 아무튼 둘 다 정정이라고 번역한다. ‘과도’는 일상 용어로는 과일 깍는 칼을 말한다. 응답은 response를 번역한 것인데 '반응' 이라고 하기도 한다. .. 2021. 2. 5.
진동 모드 해석 복소수는 실수부와 허수부를 갖는 수체계다. 실수부를 \(x\)축에, 허수부를 \(y\)축에 표시하면 복소수를 복소 평면상에 표시할 수 있다. 복소수는 보통 실수부와 허수부로 표현하지만 다음과 같이 크기와 위상각으로도 표현할 수 있다. \[ \begin{align} z &=x+jy \\ \\ &= r \cos \theta +j r \sin \theta \end{align} \] 여기서 \(r\)은 복소수의 크기, \(\theta\)는 위상각이며 각각 다음과 같이 계산할 수 있다. \[ r= \sqrt{x^2+y^2 }, \ \ \ \theta =\tan^{-1} \left( \frac{y}{x} \right) \] 오일러 공식(Euler formula)에 의하면 다음 식이 성립하므로, \[ e^{j \th.. 2021. 1. 26.
운동 모드 해석 고유값(eigenvalue)과 고유벡터(eigenvector)의 개념은 여러 분야에서 사용되고 있다. 운동 모드를 해석할 때도 사용되는데 이에 대해서 알아보자. 다음과 같이 상태변수의 미분 방정식으로 표현되는 운동 방정식이 있다고 하자. \[ \dot{\mathbf{x}}= A \mathbf{x} \tag{1} \] 여기서 \(\mathbf{x}(t)\)는 상태변수로서 성분이 \(n\)개인 벡터다. \(A\)는 성분이 모두 실수 값인 \(n \times n\) 행렬이다. 위 식은 \(n\)개의 스칼라 미분 방정식이 서로 연결된 연립 미분 방정식으로서 외부 입력이 작용하지 않는 다양한 선형 운동 방정식을 표현할 수 있는 범용 식이다. 식 (1)을 상태공간 방정식(state-space equation)이라고.. 2021. 1. 26.
[Continuous-Time] 선형 시스템 시스템은 여러가지 기준으로 다양하게 분류될 수 있는데, 우선 시스템을 선형 시스템과 비선형 시스템으로 분류할 수 있다. 선형 시스템(linear system)인지 판별하기 위해서 두 개의 초기값과 입력 및 출력 세트가 있다고 하자. 첫 번째 세트는 임의의 시간 \(t=t_0\)에서 상태변수의 초기값이 \(\mathbf{x}_1 (t_0)\)이고, 시간 영역 \(t \ge t_0\)에서 입력이 \(\mathbf{u}_1 (t)\)일 때 출력이 \(\mathbf{y}_1 (t)\)이고, 두 번째 세트는 상태변수의 초기값이 \(\mathbf{x}_2 (t_0)\)이고 시간 영역 \(t \ge t_0\)에서 입력이 \(\mathbf{u}_2 (t)\)일 때 출력이 \(\mathbf{y}_2 (t)\)이다. 선형.. 2021. 1. 10.