본문 바로가기

전체 글324

NED 좌표계와 LLH 좌표계간의 속도 변환식 미사일의 속도 \(\vec{V}\) 는 ECEF 기준, 즉 지면 기준의 상대적인 속도이므로 다음과 같다. \[ \vec{V} = \frac{^ed\vec{r}}{dt} \tag{1} \] 여기서 \(\vec{r}\) 는 지구 중심에서 미사일까지의 위치벡터다. 한편 미사일의 질량 중심점을 원점으로 하고 속도 방향을 x축, 지표면과 수평인 평면에서 속도 방향의 오른쪽 방향을 y축으로 하는 좌표계를 미사일 운동 좌표계 \(\{d\}\) 로 정의하므로 속도벡터를 좌표계 \(\{d\}\) 로 표시하면 다음과 같다. \[ V^d= \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix} \tag{2} \] 여기서 \(V\) 는 \(\vec{V}\) 의 크기다. NED(North-East-Down).. 2022. 1. 9.
ECEF-LLH 좌표계 상호 변환 매트랩 코드 LLH 좌표계에서 ECEF좌표계로 좌표변환하는 문제를 알고리즘 형태로 정리하면 다음과 같다. 입력: 위도 (\(\lambda_{lat}\)), 경도 (\(\lambda_{lon}\)), 높이 (\(h\)) 1. 접선반경 (\(R_{tr}\)) 계산: \(R_{tr}=\frac{ R_{eq}}{ \sqrt{1-e_{er}^2 \sin^2 \lambda_{lat}}}\) 2. 벡터 \(r^e\) 계산: \(r^e= \begin{bmatrix} (R_{tr}+h) \cos \lambda_{lat} \cos \lambda_{lon} \\ (R_{tr}+h) \cos \lambda_{lat} \sin \lambda_{lon} \\ \left( R_{tr} (1-e_{er}^2 )+h \right) \sin \la.. 2022. 1. 1.
ECEF 좌표계와 LLH 좌표계 지구중심지구고정 좌표계(ECEF, earth-centered earth-fixed frame)는 지구의 중심에 원점이 위치하며 지구에 고정되어 있어서 지구와 함께 자전하는 좌표계이다. 지구와 함께 자전한다는 점에서 ECI 좌표계와는 다르다. 기호로는 {e}로 표시한다. 좌표계의 \(\hat{e}_1-\hat{e}_2\) 평면은 지구의 적도면에 위치한다. \(\hat{e}_3\) 축은 ECI 좌표계의 \(\hat{i}_3\) 와 같은 방향으로 지구의 자전축 방향이며 \(\hat{e}_1\) 축은 지구 적도와 그리니치(Greenwich) 자오선이 만나는 점을 향한다. \(\hat{e}_2\) 축은 오른손 법칙에 의해 정해진다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \(^i \vec{\omeg.. 2021. 12. 30.
SCI 좌표계와 ECI 좌표계 뉴턴의 운동법칙을 적용하기 위해서는 관성좌표계가 필요하다. 태양계 내에서 태양 주위를 공전하는 행성이나 혜성, 그리고 행성간 우주 탐사선 등의 운동에는 '태양중심 관성좌표계'를 사용하고, 지구 주위를 공전하는 인공위성의 운동에는 '지구중심 관성좌표계'를 사용하는 것이 편리하다. 태양도 은하계 중심을 기준으로 공전하고, 지구 역시 태양 중심을 기준으로 공전하기 때문에 엄밀한 의미에서 두 좌표계는 관성좌표계가 아니지만, 해당 운동 영역에서는 관성좌표계로 간주해도 정확도면에서 충분하기 때문이다. 지구가 태양주위를 공전하면서 만드는 평면을 황도면 (또는 공전궤도면)이라고 한다. 지구의 적도면은 이 황도면을 기준으로 \(23.4\) 도 기울어져 있다. 적도면과 황도면이 만나는 선을 춘분선(vernal equino.. 2021. 12. 30.
기본 궤도 미분 방정식의 무차원화 이체문제 가정하에서 다음과 같이 기본 궤도 미분 방정식을 유도한 바 있다. \[ \frac{^id^2 \vec{r}}{dt^2} + \frac{\mu}{r^3} \vec{r} =0 \tag{1} \] 여기서 \(\mu=GM\) 은 중력 파라미터, \(\vec{r}\) 은 관성 좌표계 \(\{i\}\) 의 원점에서 질점 \(m\) 까지의 위치 벡터, \(r\)은 위치 벡터의 크기, 즉 거리다. 이 방정식에서 사용하는 거리와 시간의 크기는 \(km\) 나 초 (\(sec\))로 표시하기에는 너무 큰 경우가 많기 때문에 숫자의 크기를 줄이고 수치연산 시간을 줄이기 위해서 천문단위를 도입하여 사용하는 경우가 있다. 천문단위는 무차원화(nondimensionalization)된 시간과 거리 단위를 말한다. 먼저 .. 2021. 12. 30.
원형 지구 가정에 의한 미사일 운동 방정식 유도 지구는 자전의 영향으로 약간 타원형이다. 그래서 위도와 경도를 계산하기가 복잡하고, 지면과 수직인 방향이 지구의 중심을 향하지 않기 때문에 수식 전개가 어려워진다. 하지만 지구가 타원형이 아니고 원형이라고 가정하면 이러한 문제가 해결된다. 지구는 이심율이 매우 작은 거의 원형에 가까운 타원형이기 때문에 원형 지구 가정은 지구 재진입 비행체나 중/장거리 미사일의 운동 방정식을 세울 때 많이 사용된다. 원형 지구 가정에 의해서 다음 식이 성립한다. \[ \begin{align} & \vec{r}=-r \ \hat{n}_3 \tag{1} \\ \\ & r=R_{mean}+h \\ \\ & \vec{g}=g \ \hat{n}_3 \end{align} \] 여기서 \(R_{mean}\) 은 지구 평균 반지름이고 .. 2021. 12. 23.
평평한 지구 가정에 의한 미사일 운동 방정식 유도 단거리 미사일의 경우 지구 자전속도, 중력 가속도 방향, 지표면의 곡률 등의 차이는 미사일 운동에 큰 영향을 끼치지 못한다. 이 경우에는 '평평한 지구 가정'을 적용할 수 있다. 평평한 지구 가정이란 지구가 자전하지 않고 지면이 평평한 것으로 가정하겠다는 뜻이다. 그러면 지표면에 고정된 한 점을 원점으로 한 고정 NED 좌표계(fixed local tangent frame) \(\{n\}\) 을 관성좌표계로 간주할 수 있다(일반적으로 미사일 운동을 위한 좌표계는 \(\{i\} \to \{e\} \to \{n\} \to \{d\} \to \{m\} \to \{b\}\) 순으로 전개된다). 그리고 지구 중력가속도 방향은 항상 NED 좌표계의 Down 방향(\(\hat{n}_3\))이므로 다음과 같이 쓸 수 .. 2021. 12. 22.
ECEF 좌표계에서 미사일 운동 방정식 유도 지구 중심에서 미사일의 위치까지의 위치 벡터를 \(\vec{r}\) 이라고 하고 미사일을 질량 \(m\) 인 질점이라고 가정하면, 뉴턴의 운동법칙에 의해서 미사일 운동 방정식은 다음과 같이 주어진다. \[ \frac{^id}{dt} \left( m \frac{^id\vec{r}}{dt} \right) = \vec{L}+\vec{D}+m \vec{g} \tag{1} \] 여기서 \(\vec{L}\) 은 양력, \(\vec{D}\) 는 항력, \(\vec{g}\) 는 중력가속도다. 식 (1)에서 중요한 점은 질량 \(m\) 이 상수가 아니라 시간의 함수라는 것이다. 그럼에도 불구하고 식 (1)을 아래 식과 같이 미분하면 안된다. \[ \frac{^id}{dt} \left( m \frac{^id \vec{r}.. 2021. 12. 21.
미사일 좌표계의 정의 미사일 운동 방정식을 세우기 위해서는 상황에 따라 다음과 같이 여러 개의 좌표계가 필요하다. (1) ECI (earth-centered inertial)와 ECEF (earth-centered earth-fixed) 좌표계: ECI 좌표계 \(\{i\}\) 와 ECEF 좌표계 \(\{e\}\) 좌표계는 다음 그림과 같이 정의한다. ECI 좌표계에 대한 ECEF 좌표계의 각속도 벡터는 \[ ^i \vec{\omega}^e = \omega_{ie} \hat{e}_3 \tag{1} \] 이며 지구자전 각속도 \(\omega_{ie}\) 는 약 \(360^0/day\) 로서 WGS-84(World Geodetic System 1984)의 국제 표준값은 \(\omega_{ie} = 7.291151467 \time.. 2021. 12. 20.
[PSOC-5] 가우시안 쿼드래처 (Gaussian Quadrature) 가우시안 쿼드래처(Gaussian quadrature)는 구간 \([-1, 1]\) 에서 어떤 함수 \(f(\tau)\) 의 적분값을 적분 구간내의 특정 지점에서의 함수값의 가중치 합으로 계산하는 수치적분 방법이다. \[ \int_{-1}^1 f(\tau) \ d \tau \approx \sum_{i=1}^N w_i f(\tau_i) \tag{1} \] 여기서 적분 구간내의 특정 지점인 \(\tau =\tau_1, \tau_2, ..., \tau_N\) 을 쿼드래처 포인트라고 하고, \(w_i\) 를 쿼드래처 포인트의 가중치(weighting)이라고 한다. 가우시안 쿼드래처의 정확도는 쿼드래처 포인트의 갯수와 점 사이의 간격에 달려있다. 함수 \(f(\tau)\) 를 \((N-1)\) 차 라그랑지 보간 .. 2021. 12. 18.
[PSOC-4] 라그랑지 보간 다항식 \(N\) 개의 임의의 점 \(t_i\) 에서 함수 \(f(t)\) 의 값 \(f(t_i)\) 가 주어졌을 때, \(N\) 개의 점 \(f(t_i)\) 를 지나는 \((N-1)\) 차 라그랑지 보간 다항식(Lagrange interpolation polynomials) \(p(t)\) 는 다음과 같이 주어진다. \[ f(t) \approx p(t) = \sum_{i=1}^N f(t_i ) L_i (t) \tag{1} \] 여기서 \(t_i\) 를 보간점(interpolating point)라고 한다. 또한 \(L_i (t)\) 를 \((N-1)\) 차 라그랑지 기저 다항식(Lagrange basis polynomials) 또는 라그랑지 다항식이라고 하며 다음과 같이 정의한다. \[ L_i (t)= \pr.. 2021. 12. 17.
[PSOC-3] 가우스 포인트 (Gauss Points) 가우스 포인트(Gauss points)는 \([-1, 1]\) 의 구간에서 정의되는 점들의 집합으로서 점(point)간의 간격이 서로 다르다는 특징이 있다. 가우스 포인트는 라그랑지 보간 다항식(Lagrange interpolation polynomials)의 보간점(interpolating point), 가우스 쿼드래처(Gauss quadrature)의 쿼드래처 포인트(quadrature point), 그리고 유사 스펙트럴 방법(pseudospectral method)의 콜로케이션 포인트(collocation point)로 사용된다. 가우스 포인트는 다음 3가지가 있으며, 각각 다음과 같이 정의된다. (a) LGL (Legendre-Gauss-Lobatto) 포인트: LGL 포인트는 \((N-1)\) .. 2021. 12. 16.
[PSOC-2] 르장드르 다항식 (Legendre Polynomials) 르장드르 다항식(Legendre polynomials)은 다음 르장드르 미분방정식을 만족하는 다항식 \(P_N (\tau)\) 이다. \[ (1-\tau^2 ) \ddot{P}_N (\tau)-2 \tau \dot{P}_N (\tau)+N(N+1) P_N (\tau)=0, \ \ \ \ N=0, 1, 2, ... \tag{1} \] 여기서 독립변수 \(\tau\) 는 \([-1, 1]\) 의 범위를 갖는다. \(P_N (\tau)\) 을 \(N\) 차 르장드르 다항식이라고 한다. \(N=0\) 일 때의 미분 방정식의 해, 즉 \(0\) 차 르장드르 다항식은 \(P_0 (\tau)=1\) 이고, \(N=1\) 일 때의 해는 \(P_1 (\tau)=\tau\) 이다. \(N \ge 2\) 일 때는 다음과 같.. 2021. 12. 15.
[PSOC-1] 유사 스펙트럴 기반 최적제어 개요 대부분의 연속시간 최적제어 문제는 해석적으로 풀기가 매우 어렵기 때문에 수치적인 방법이 사용된다. 최적제어에 사용되는 두 가지 유형의 수치적 방법에는 간접방법(indirect method)과 직접방법(direct method)이 있다. 간접방법에서는, 우선 변분법(calculus of variation)을 사용하여 최적 필요조건을 유도한 후, 2점 경계값 문제(TPBVP, two-point boundary value problem) 또는 다중점 경계값 문제(MPBVP, multi-point boundary value problem)를 푼다. 이 방법의 주요 장점은 높은 정확도와 빠른 수렴이다. 그러나 몇 가지 단점이 있다. 첫째, 복잡한 제약 조건을 고려할 때, 필요한 조건에 대한 해석식을 도출하는 것이.. 2021. 12. 15.